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SUMMARY

The recent integration of physiological responses of ectotherms in climate
change models has provided a greater insight into the species thermal window of
adaptation, hence future distribution ranges. However, there are still fundamental
gaps in these climate change models. In the present thesis, intertidal ecosystems
were used as outdoor laboratories and valuable models, which used invertebrates
as bio-indicators to bridge the gaps between the thermal ecology of ectotherms
and climate change models. Intertidal invertebrates already live at or near to the
upper edge of their thermal tolerance window, hence have limited physiological
abilities to adapt to further warming. Their behavioural adaptations to mean
temperature increase and especially to extreme events are then likely to play a
major role in the maintenance of individuals’ fitness in the warming climate.
Nevertheless, the behaviour is still absent from climate change models. In
addition, the local environmental context, especially the spatial environmental
thermal heterogeneity, is overlooked in climate change models. Yet, this appears
critical since mobile ectotherms living in heterogeneous environments such as the
intertidal might behaviourally take advantage of thermal mosaics when facing
new environmental conditions by, for example, relocating into thermally
favourable microhabitats. The large scale approach used in climate change studies
also leads to erroneous measurements of ectotherm body temperatures that largely
contribute to distribution patterns. Indeed, they usually consider air temperature
measured at large spatial scale to be a good proxy for animal body temperatures.
Nonetheless, organism thermal properties are determined by multiple non-
climatic and biotic variables which interact at the niche level. In this context, the

present work aimed to investigate (i) the primary factor(s) that determine body



temperature, displacement and distribution patterns of mobile intertidal
ectotherms at the individual scale, (ii) the space-time heterogeneity in
environmental and invertebrate body temperatures at a range of scales by using
thermal imaging, and (iii) the potential adaptive behavioural capacity of intertidal
ectotherms to compensate for climate change. The main results show that
substratum temperature could be used as a primary determinant for mobile
intertidal ectotherms in climate change models, instead of air temperature. | also
highlight a high substratum thermal heterogeneity at centimeter scale in different
habitats, i.e. tropical mangroves and temperate rocky shores. This contributes to
the growing evidence that small spatial scale variability in thermal environmental
properties can surpass the thermal variability measured at large spatial scales.
Besides this evidence for the importance of thermal variability, | have
demonstrated that the gastropod species Littoraria scabra, in tropical mangroves,
and Nerita atramentosa, on temperate rocky shores, were able to select thermally
favourable microhabitats or substrata to behaviourally thermoregulate. | also
emphasise the buffering role of aggregation behaviour under cold, hot and
desiccation stresses. In conclusion, the present work shows the need to integrate
small spatial scale heterogeneity found in environmental conditions and
thermoregulatory behaviours that appeared to be species and habitat-specific into
climate change models. This small spatial scale heterogeneity constitutes a
fundamental prerequisite to make prediction about ectotherm distribution ranges

in the changing climate.
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