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ABSTRACT 

Neuromuscular disorders such as multiple sclerosis or motor neuron disease lead to long-term 
degeneration of the efferent nervous system, resulting in progressive loss of motor function. Loss of 
motor function has been shown to severely impact independence and quality of life. As the 
underlying mechanisms triggering neuromuscular disorders are poorly understood, treatment 
focuses on improving patient independence and quality of life with assistive technologies. Brain 
computer interfaces (BCI) are a type of assistive technology that allow users to interact with exterior 
devices using brain activity alone, being particularly suited for patients with limited motor function. 
Many types of ‘paradigm’ can be used to evoke specific patterns in the brain, which can be used to 
control a brain computer interface. The motor imagery paradigm is one type, which requires the user 
to imagine a movement, triggering an event related desynchronisation (ERD) to occur within the 
relevant region of the sensorimotor cortex. Motor imagery paradigms are advantageous in that they 
allow intuitive control of a brain computer interface through self-modulation of their brain activity. 
Despite this, the current literature reports poor performance due to higher training requirements and 
reported BCI illiteracy. The proposed method was a modified motor imagery paradigm, which used 
real and imagined movements to train a classifier. Using EEG and EMG, event related 
desynchronisation was to be measured and recorded across movements, for use in training support 
vector machine and neural network classifiers. By using tripolar concentric ring electrodes (tCRE) 
as the sensory modality, it was hypothesised that this would reduce the presence of muscle artefacts, 
improving classifier training outcomes. Participants for the study were recruited from within the 
research group (n = 7). Participants were tasked with performing a series of movements, classified 
as either full extension, partial extension and imagined extension of the fingers. All participants 
demonstrated some level of event related desynchronisation using both emulated EEG and tCRE. 
From the channel demonstrating the greatest desynchronisation in each participant, a dataset was 
created for classifier training. A support vector machine was trained using leave-one-sample-out 
cross-validation, with a reported classification accuracy of (66.8%± 3.71) and (65.6%± 1.69) for 
emulated EEG and tCRE, respectively. Similarly, a neural network was trained using K-fold cross-
validation, returning an emulated EEG accuracy of (51.7%± 1.01) and tCRE accuracy of (52.7%±
0.90). The results indicate that tCRE offers no additional benefit to classifier performance over 
emulated and ordinary EEG. Comparing with the literature, it was noted that studies utilising similar 
methods achieved higher classifier accuracy. It was speculated that this discrepancy was a result of 
the number of channels used for training the classifier. Support vector machine training was 
repeated, including all channels, with a reported accuracy of 88%, providing support for this 
speculation. Future studies should investigate the relationship between channel number and 
classifier performance further, particularly focusing on methods that maintain performance with a 
reduced channel setup.  
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INTRODUCTION 

Background 

Neurodegenerative Diseases 

Neurodegenerative diseases refer to a category of conditions that result in progressive degeneration 

of functionality within the nervous system. A subset of these conditions can affect efferent pathways, 

leading to deterioration and ultimately loss of motor control.  

For example, multiple sclerosis (MS) is an autoimmune disorder which leads to an individual’s 

immune system attacking protective myelinated sheathing within the central nervous system. It is 

estimated that multiple sclerosis affects more than 2.8 million people worldwide (Walton et al. 2020). 

Similarly, amyotrophic lateral sclerosis (ALS) is another neurodegenerative disorder which causes 

degeneration of efferent neurons related to voluntary movement. ALS is considered the most 

common form of motor neuron disease and has an estimated prevalence of 6 per 100 000 annually 

(Talbott et al. 2016). While the mechanisms of progression differ between disease, the outcome is 

the same, reduced transmission of efferent signals, resulting in muscle weakness and eventual loss 

of voluntary motor control. 

The progression of multiple sclerosis and other neurodegenerative disorders has been found to have 

a profoundly negative effect on an individual’s quality of life, with increased fatigue and loss of self-

efficacy cited as dominant factors which limit quality of life (Young et al. 2021). Presently, the exact 

causes of both multiple sclerosis and amyotrophic lateral sclerosis are poorly understood, with no 

treatment options available to cure or halt progression (NINDS, 2023). As such, treatment typically 

focuses on improving both comfort and independence through the use of assistive technologies. 

Brain Computer Interfaces 

A brain computer interface (BCI) is a tool that allows an individual to interact with external devices 

through the use of brain signals. Brain computer interfaces can be divided into 3 subsystems; a 

sensory apparatus for detection of brain signals, a processor for producing useful instructions from 

brain activity, and a machine interface, which transmits instructions to an external device.  

Brain computer interfaces have been developed as a communication tool primarily for use in the field 

of rehabilitation. For individuals with reduced capacity for muscle movement, it can be incredibly 

difficult to interact with the environment. Many forms of assistive interface require movement on 

some level, whether it be through a mechanical apparatus such as a keypad, an eye-tracker or voice 

commands. With advanced progression of neuromuscular disorders, it may not be possible to use 

these assistive tools effectively. Conversely, brain computer interfaces do not rely on physical 

interaction with an assistive device. Rather, BCI can be used for interaction through either conscious 
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or unconscious modulation of brain signals, allowing continued use throughout disease progression, 

even in instances of complete paralysis.  

While all brain computer interfaces can be divided into the same 3 subsystems, the sensory 

apparatus used, as well as the types of brain signals used in controlling it can differ significantly. 

Sensing can be further categorised as invasive or non-invasive, where invasive methods involve the 

implantation of sensors below the skin, as in electrocorticography. While invasive methods can 

improve the ratio of signal to noise, their use may be received poorly by patients, depending on their 

perceived risk-reward ratio (Lahr et al. 2015). Conversely, this thesis focuses on the use of non-

invasive electroencephalography (EEG), which monitors brain activity by adhering electrodes to the 

scalp. Electroencephalography is favourable over other non-invasive sensing modalities like 

magnetic resonance imaging (MRI), due to its portability and reduced cost (Abiri et al. 2018). As a 

result of its high temporal resolution, EEG is particularly well-suited for use in real-time control, an 

important aspect of BCI design. 

The type of stimulation paradigm used to control a brain computer interface can be categorised as 

either internal or external. External stimulation involves the use of an additional external apparatus 

to evoke specific brain signals through visual or auditory stimulation. One popular paradigm uses a 

flickering light to produce steady-state visually evoked potentials (SSVEPs). By flickering a light at a 

specific frequency, a complementary increase in the power of this frequency can be observed in the 

spectral content of EEG signals (Abiri et al. 2018). Another type of external stimulation paradigm is 

the P300, which is a type of event related potential triggered through the identification of irregular 

visual stimuli, referred to as the ‘oddball paradigm’. While external stimulation paradigms are 

advantageous in that the response is unconscious, and as such training time is substantially 

reduced, additional equipment is required to elicit the desired response.  

Internal stimulation paradigms rely on the conscious modulation of brain activity to evoke the desired 

brain signal. This thesis focuses on the use of an internal stimulation paradigm, specifically the motor 

imagery paradigm. Previous literature has demonstrated that the conscious imagination of 

movement activates the same areas of the brain responsible for generating real movement 

(Pfurtscheller et al. 1997). During moments of rest within the motor cortex, neurons demonstrate 

synchronisation of activity within the mu frequency band from 8-12 Hz. Activation of the motor cortex 

during real and imagined movements triggers an ‘event related desynchronisation’ (ERD), in which 

the mu frequency band becomes reduced (Pfurtscheller et al. 1999). Motor imagery paradigms focus 

on identifying this event related desynchronisation through imagination of a specific movement. The 

motor imagery paradigm is advantageous over external stimulation techniques in that control is 

achieved consciously, removing the requirement for additional external devices. 

Brain computer interfaces are currently limited within the motor imagery paradigm, as a result of a 

phenomenon referred to as BCI illiteracy. Illiteracy within the motor imagery paradigm is an inability 
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to accurately induce the correct event related desynchronisation after sufficient training, with surveys 

indicating between 10% and 50% of participants tested showed illiteracy (Zhang et al. 2021). 

Additionally, due to the difficulty of imagining movements, training an individual to successfully use 

a motor imagery BCI can take many sessions. It was hypothesised in a previous study that combining 

real and imagined movements together during training would make visualising imagined movements 

easier, decreasing training time and improving classifier performance (Ostendorf, 2022).  

Tripolar Concentric Ring Electrodes 

While the temporal resolution of traditional EEG is considered much better than other sensing 

methods like MRI, the spatial resolution of EEG is poor, limiting the localisation of brain signals. One 

technique for improving the spatial resolution in an EEG is to calculate the surface Laplacian, which 

filters spatially distant or spread signals, such as muscle noise (Koka et al. 2007). However, to 

calculate the Laplacian, a large number (64+) of electrodes is required (Kayser et al. 2016). While 

acceptable within a clinical setting, a high number of electrodes should be avoided in BCI contexts, 

as too many wires could make the design cumbersome and difficult to setup. Furthermore, 

calculating the Laplacian is a computationally intensive task, requiring increased computational 

power to perform in real-time. 

An alternative method for improving spatial resolution is to utilise a tripolar concentric ring electrode 

(tCRE). A tripolar concentric ring electrode extends ordinary electrodes by including two additional 

rings, each located within the previous. It has been demonstrated that tCRE is capable of calculating 

the Laplacian automatically, reducing the presence of mutual information and noise without the 

requirement for cumbersome electrode setups (Koka et al. 2007). Furthermore, as tCRE is 

composed of several concentric rings, the outermost ring can be used to provide ordinary disc 

electrode EEG, referred to as emulated EEG (eEEG). 
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Project Details 

Aim 

This thesis is an extension of a previous project that aimed to test the validity of combining real and 

imagined movements to train a classifier in the motor imagery paradigm (Ostendorf, 2022). While 

the previous project focused on the creation of a training paradigm that used both real and imagined 

movements, this thesis extends the focus to determine the merits of using tCRE within this new 

paradigm. By utilising tripolar concentric ring electrodes, it may be possible to improve the spatial 

selectivity of electrodes, allowing for improved localisation of event related desynchronisation. 

Furthermore, by improving localisation it may be possible to use higher density electrode setups for 

identification of ERD in closely located regions of the motor cortex, potentially allowing for the 

development of a more robust BCI. To determine the suitability of tCRE in BCI applications, a series 

of research objectives were created: 

• RO1: Using a motor imagery paradigm, collect EEG data with tCRE 

• RO2: Identify the presence of event related desynchronisation within emulated EEG and 

tCRE EEG data 

• RO3: Develop a support vector machine classifier for comparing emulated EEG and tCRE 

performance with previous work 

• RO4: Experiment with neural network classifiers for identifying event related 

desynchronisation 

Research Questions 

With completion of the listed research objectives, the following research questions should be 

answered: 

• RQ1: Can event related desynchronisation be observed using tripolar concentric ring 

electrodes? 

• RQ2: What differences can be observed in event related desynchronisation between tCRE 

and emulated EEG? 

• RQ3: How does training an ERD classifier on tCRE data influence accuracy, in comparison 

to ordinary and emulated EEG? 

• RQ4: What differences in training performance can be observed between support vector 

machine and neural network algorithms? 

Scope 

This project is focused specifically on identifying the potential merits of tCRE over ordinary and 

emulated EEG in training an ERD classifier. While the project focuses on the benefits of 

implementation in BCI systems, the actual development of a BCI was outside of the project’s scope. 

Additionally, the project was limited to members of the research group, so no testing on individuals 

with neurodegenerative disorders was conducted. Because of the individualistic nature of brain 
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activity, it was not feasible to create a classifier to predict ERD across participants. Instead, a 

separate classifier was used for each participant. Due to time constraints placed on the project, each 

classifier was trained on data collected from a single recording session, rather than several sessions, 

limiting the size of the training dataset. 

Thesis Structure 

This thesis is subdivided into six chapters. The literature review in chapter 2 provides additional 

context on the background with justifications on the major design choices of the project based on 

methods within the literature. The limitations of current literature were identified, with a gap statement 

included to show the relevance of the project and its potential contribution to the literature. The 

methodology in chapter 3 details the experimental protocol used during data collection, as well as 

highlight the data processing used. Additionally, chapter 3 includes details on the training and testing 

methods used for each classifier, as well as the methods used for analysing performance. Chapter 

4 shows the results of the project, including graphs identifying event related desynchronisation in 

participant data, as well as the measured performance of each classifier across both tCRE and 

emulated EEG. Chapter 5 discusses the findings of the project in the context of the research 

questions presented and previous literature, as well as potential future directions for the project. 

Finally, chapter 6 highlights the key outcomes of the project, and concludes the thesis. 
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LITERATURE REVIEW 

Orientation 

Brain computer interfacing is a complex assistive technology, with substantial research dedicated to 

improving its many subsystems. As this project is primarily focused on the sensing and processing 

phases of a BCI, rather than its integration into exterior support devices, this literature review will 

investigate the literature relevant to the sensory modalities used, experimental paradigms for 

controlling the BCI, and classification techniques that have been used in BCI contexts. After 

summarising current knowledge in this field, a gap statement was included to highlight how this 

project may fill a gap in the literature. 

Measuring Brain Signals 

Electroencephalography 

Electroencephalography (EEG) is one of the oldest and most popular sensory modalities used in the 

development of brain-computer interfaces. Michel and Brunet (2019) suggest that despite the 

portability and inexpensive nature of EEG, the modality is currently limited by the poor spatial 

resolution of electrodes. Similarly, Burle et al (2015) arrive at the same conclusion, while EEG is 

useful as a diagnostic tool for neurological activity, the lack of spatial resolution associated with the 

method limits the ability to localise detected activity. Burle et al follows by suggesting that EEG spatial 

resolution can be improved significantly by utilising the surface Laplacian technique. This is 

corroborated by Carvalhaes and Barros (2015) who discuss the theory and methods behind the 

implementation of the surface Laplacian in EEG. The surface Laplacian is a technique that relates 

the surface scalp potentials to the localised flow of electric current as a result of brain activity. Both 

Burle et al (2015) and Carvalhaes and Barros (2015) agree that approximating the surface Laplacian 

with EEG should significantly increase its associated resolution. Increasing the spatial resolution of 

EEG is advantageous in that it will allow enhanced localisation of detected signals, providing greater 

insight into the function of the brain. In the context of brain-computer interfaces, enhanced spatial 

resolution would be advantageous in that signals could be detected from closely positioned brain 

regions, allowing for the effective control of more advanced BCI designs. Carvalhaes and Barros 

(2015) state that while estimated surface Laplacians could be used for improving spatial resolution, 

their calculation can be computationally intensive, particularly on larger datasets. Extending this 

further, surface Laplacians may be too computationally intensive for implementation in portable and 

especially real-time systems like BCI. For use in brain-computer interfaces, a more computationally 

efficient method will be necessary to reap the benefits of increased resolution. 
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Tripolar Concentric Ring Electrodes 

Tripolar concentric ring electrodes (tCRE) may offer a new method of improving EEG resolution in a 

computationally efficient manner. Besio et al (2006) developed a new technique for conducting EEG 

that utilised electrodes formed from multiple concentric rings. These tripolar concentric ring 

electrodes were designed to automatically calculate the surface Laplacian effectively removing the 

associated computation requirements of the technique. This is particularly advantageous for systems 

that may lack the appropriate computing power or for systems that may need to process EEG in real-

time, as with BCI. Liu and Besio (2013) conducted a comparative study between disc electrodes and 

tCRE to determine the difference in spatial selectivity between the two sensor types. Common spatial 

subspace decomposition was used to extract visually evoked potentials in participants. The 

normalised power of the visually evoked potentials was compared between modalities, with the 

results indicating a significantly higher specificity for tCRE. Furthermore, the tCRE electrode 

demonstrated a half sensitivity volume one tenth the size of the corresponding disc electrode. A 

follow-up study by Liu et al (2020) corroborated these results, calculating a half sensitivity volume 

for disc electrodes that was 9.6 times greater than their tCRE counterpart. An earlier study by Koka 

and Besio (2007) found similar results, with tCRE demonstrating a significantly higher signal-to-noise 

ratio and reduced mutual information between electrodes. These provide support to the idea that 

tCRE may be suitable for use in higher density electrode setups for more advanced BCI designs. It 

should be noted that the validity of these results may be questionable, as one of the key researchers, 

Walter Besio, was heavily involved in the development and commercialisation of tCRE, and as such 

may have a conflict of interest in the results published. Aghaei-Lasboo et al (2020) found that the 

performance of tCRE and disc electrodes in seizure detection was comparable, although noting that 

tCRE did yield reduced muscle artifacts in the recorded signal. Besio et al (2014) also reported 

greater attenuation of muscle artefacts in the analysis of high-frequency oscillations occurring in 

epilepsy patients. It was noted that tCRE demonstrated poorer performance for the detection of 

signals that were widely spatially distributed. This is an implicit weakness of tCRE, as a result of the 

higher spatial selectivity greater attenuating signals that are further away from the electrode. Despite 

this apparent weakness, the advantages of automated Laplacian calculation make tCRE a suitably 

appropriate candidate for use in brain-computer interfacing. 
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participant, with particularly significant activity in the parietal region. Polich goes further to suggest 

that by adding a tertiary ‘distractor’ stimulus to the oddball paradigm, two different types of P300 can 

be elicited, P3a and P3b. Since P300 can be elicited easily through the oddball paradigm, it is 

possible to design a brain-computer interface around this. For example, by having a set of images 

displayed and flashed consecutively, different BCI outputs can be activated by focusing on a 

corresponding image when it flashes. An early paper by Farwell and Donchin (1988) discuss an 

implementation of this strategy to control a rudimentary keyboard. Character rows and columns 

would be cycled repeatedly with a P300 being produced when the desired row or column was 

reached. Using this setup, it was possible to achieve a character selection rate of 2.3 per minute. 

Another study by Piccione et al (2006) used P300 for two-dimensional control of a ball on a screen. 

Arrows were placed on each side of the screen and flashed consecutively. As the arrowing being 

focused on is flashed, a P300 will be produced, which is used to control the direction of the ball 

accordingly. Bell et al (2008) used P300 as a proof-of-concept for a humanoid robot BCI. A set of 

images would be displayed to participants and flashed randomly, evoking a P300. A support vector 

machine was then used to classify which image was being focused on. Across the set of participants 

(n = 8), a 95% accuracy was achieved for 5-second selection windows. Comparing the three studies, 

it was determined that P300 is an external stimulus, meaning it relies on some external device to 

elicit the correct response in the subject’s brain. The advantage of this is that minimal training is 

required for use in a brain-computer interface, since the P300 is unconsciously generated. A 

disadvantage of this is that the subject will be reliant on some external device to use the BCI, 

decreasing independence. Another disadvantage that was noted, particularly in Farwell and 

Donchine (1988) was the slowness of decision making. The P300 will only be produced by looking 

out for a particular stimulus, meaning that the speed of control is limited by how fast each stimulus 

can be cycled. It was also noted that consistent usage of the oddball paradigm may make the 

stimulus ‘expected’, reducing the magnitude of the P300 with time. The slow operation time, in 

conjunction with the reliance on external stimulus make the P300 a poor choice as a paradigm for a 

mobile brain-computer interface. 

Steady-State Visually Evoked Potential 

Steady-state visually evoked potentials (SSVEPs) are another popular paradigm used in the control 

of brain-computer interfaces. Vialette et al (2010) describes an SSVEP as a type of visually evoked 

potential related to a flickering visual stimulus. With the introduction of a flickering light stimulus, a 

frequency is induced in the brain complementary to the frequency of the flicker. This is beneficial for 

BCI in that many different flicker rates can be used, allowing for more complex control of a device. It 

was noted that for lower frequency stimuli, the light flicker could cause noticeable eye fatigue for the 

participant, providing a significant disadvantage for using SSVEP. Similarly, both Chang et al (2014) 

and Müller et al (2011) reported subject eye fatigue from stimulus flicker. To reduce fatigue, Chang 

et al used a higher frequency amplitude-modulated carrier signal to display lower frequency signals. 
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From He et al (2015), motor imagery is considered an internal stimulus, rather than external like 

P300 or SSVEP. One disadvantage of using an internal stimulus is that brain modulation requires 

conscious effort from the subject, which can mean that controlling a brain-computer interface would 

require extensive training. The advantage of using an internal stimulus is that no supplementary 

devices are required to elicit specific responses, the subject elicits them voluntarily, giving users 

greater control and independence. Motor imagery paradigms have seen considerable usage, but are 

less popular than P300 or SSVEP due to the training requirements necessary for effective control. 

Zhang et al (2019) demonstrated using a linear support vector machine to classify a binary motor 

imagery task. It was determined that mean accuracy across datasets was between 83 and 85 

percent. Aldea and Fira (2014) used linear discriminant analysis for binary classification of imagined 

left- and right-hand movement, demonstrating a performance that varied significantly between 

subjects (68-91%). Bhattacharayya et al (2011) used a variety of different classifiers, such as linear 

discriminant analysis and support vector machines, on a left/right hand imagery task. From the 

studies examined, motor imagery appears compatible with a wide variety of different classifiers. 

While the training time for using a motor imagery paradigm poses a dilemma for BCI uptake, the use 

of imagined movement allows for many different control signals for a brain-computer interface and 

allows for particularly intuitive control for advanced BCI such as in limb prostheses. 

Classification 

Support Vector Machines 

One potential classifier algorithm that could be used in motor imagery brain-computer interfacing is 

the support vector machine (SVM). Noble (2006) defines a support vector machine as an algorithm 

that is designed to find the hyperplane that results in maximal separation of classes in feature space. 

For two dimensions this is simple to visualise as the line that best separates both classes, this 

principle being extended into hyperspace. Support vector machines typically work with linearly 

separable data, although can be augmented for nonlinear problems through the use of a ‘kernel’. 

Support vector machines have also seen considerable use in brain-computer interfacing. Sharma et 

al (2022) used both support vector machines and a multilayer perceptron in a motor imagery 

classification task. Average performance for the support vector machine was 74.12 percent, 

indicating the suitability of SVM in motor imagery tasks. Likewise, in Bhattacharayya et al (2011), 

support vector machines were used in conjunction with linear and quadratic discriminant analysis for 

left/right hand motor imagery classification. Using a kernelized support vector machine, the highest 

accuracy achieved was 82.14%, outperforming LDA by 3 percent. Zhang et al (2019) utilised support 

vector machines in conjunction with sparse group spatial pattern feature extraction for a simple motor 

imagery task. It was reported that mean classifier accuracy for each participant ranged from 83.3 to 

88.5 percent. From Bhattacharayya et al, it follows that support vector machines may be slightly 

better suited in motor imagery classifications. 
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Artificial Neural Networks 

The other classification algorithm that was examined was the artificial neural network. An artificial 

neural network refers to a genre of classification algorithms designed off the brain. An artificial neural 

network is formed from one or often many layers of interconnected nodes which are designed to 

separate classes. Unlike support vector machines, neural networks natively function for both linearly 

and nonlinearly separable functions since the activation functions used for each node are also 

nonlinear. One specific type of neural network, highlighted by O’Shea and Nash (2015), is the 

convolutional neural network. A convolutional neural network includes layers of neurons that perform 

convolutions on clusters of their inputs. By clustering areas together in a convolution, the number of 

weights associated with the data is considerably decreased, which can allow for substantial 

decreases in computational complexity. O’Shea and Nash highlight mention that convolutional 

neural networks see particular use in image and pattern recognition, as the use of clusters can allow 

for the detection of larger features. Neural networks have seen significantly less use in motor imagery 

and brain-computer interfacing in general, although recent developments in deep learning have 

resulted in considerable interest in the area. Wang et al (2020) used convolutional neural networks 

for two and four-class motor imagery classification tasks. For the binary classification task, mean 

model accuracy was measured as 82.4 percent, decreasing to 65% for four-class classification. 

Similarly, Dose et al (2018) used a deep learning CNN for two and four class classification tasks. 

After performing a 5-fold cross validation, the mean performance for a cross participant classifier 

was 80.38 percent, correlating closely with the results found by Wang et al. Moreover, the results 

found by Dose et al were from a large participant dataset (n=109) indicating that the performance is 

unlikely to be anomalous. A recent study by Zhao et al (2022) used convolutional neural networks to 

classify participant data in a four-task motor imagery test. Average testing accuracy was measured 

as 72.13 percent, indicating success, although it was noted that there was limited cross-compatibility 

between subjects. It was recommended that a basic model could be pre-trained and then adapted 

according to the user, compromising between performance and training time. Comparing between 

support vector machines and neural networks, Sharma et al (2022) recently used both algorithms in 

to classify left and right hand, as well as right foot imagined movement. It was noted that the support 

vector machine got an average subject accuracy of 73.17 percent. By comparison, the neural 

network used; a multilayer perceptron, achieved a performance accuracy of 92.5 percent, indicating 

significantly better performance compared to the SVM. It should be noted that the number of subjects 

used for this study was low (n=4), meaning that additional testing may be required to confirm the 

validity of these results. It was also noted that the receiver operating characteristic curve was better 

far better for the multilayer perceptron, indicating that the network was better generalised and as 

such should be more applicable to previously unseen data. One potential disadvantage for neural 

networks is the computational complexity of the model, which can quickly grow depending on the 

complexity of the input data. With careful optimisation of the features used or network reduction 
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through the use of a convolutional neural network, it is possible to overcome this weakness without 

significantly impeding performance. 

Gap Statement 

While the potential of brain computer interfacing is exciting, with a significant body of literature written 

describing the various implementations of the technology, attempts to produce a commercially viable 

product have yet to be successful. Motor imagery paradigms offer the potential for intuitive control 

over more complex BCI though they are presently held back by high BCI illiteracy rates (Qiu et al. 

2017 | Zhang et al. 2021). It has been suggested by Jeunet et al (2016) that the reason for higher 

reported BCI illiteracy may be a result of poorly designed training protocols. To that end, a new 

methodology was proposed by Ostendorf (2022) which used a modified motor imagery paradigm 

which also included real movement. As real movements are easy to perform, it was hypothesised 

that combining real and imagined movements in a protocol would provide greater familiarity with the 

movements for imagining, improving training outcomes. Many studies that focus on developing BCI 

utilise EEG setups with many electrodes (Bian et al. 2018). While feasible in clinical settings, using 

64-channel EEG is too time-consuming to setup for ordinary use and limits device portability. 

Simultaneously, the Laplacian technique for noise-filtering typically requires 64+ channel EEG 

setups, and can be computationally intensive, particularly when performed in real-time. To that end, 

it was hypothesised that tCRE could be used to bridge this gap. As such, this project aims to extend 

the previously proposed motor imagery method by Ostendorf (2022) to include the use of tCRE, 

reducing noise and improving classifier performance in a single electrode setup. 
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METHODOLOGY 

Experimental Design 

Participants 

Data collection was conducted between May 18th and August 25th within the Multi Modal Recording 

Facility (MMRF) Faraday cage at Tonsley. Participants were volunteers recruited within the research 

group with no prior history of neurodegenerative disease or other health conditions which may have 

impacted performance. 

Participant ages ranged from 22 to 49 (mean 33.5 ± 16, n = 7) with five males and two females. One 

participant was left-hand dominant, while the remaining seven were right-hand dominant. Two 

members had previous experience with both EEG recording and the motor imagery paradigm 

specifically, while the remaining five members had no prior experience with EEG. 

EEG Electrode Configuration 

The EEG recording was performed using a CREmedical t-interface 20 (figure 3), connected with a 

g.tec 64-channel electrode connector box. The connector box then interfaced with a g.tec g.HIAMP 

multichannel amplifier, which transmitted EEG information to a recording script, written in python. 

The setup was composed of 27 channels; 13 tCRE, 13 emulated EEG and a single disc electrode 

was required for use as a reference. While tCRE electrodes have in-built references, a dedicated 

reference electrode was required for the multichannel amplifier to function correctly. It should also 

be noted that tCRE electrodes can also output emulated EEG signals using the outer ring of the 

electrode and as such only 14 physical electrodes were required in the EEG setup. TD-246-4 skin 

conductance electrode paste was used for the tCRE electrodes. 
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Figure 3 The CREmedical t-interface 20. 13 tCRE electrodes were connected from the participant into 
this interface, which interfaced with g.tec 64-channel connector box. Each tCRE electrode produced 
two outputs; an emulated EEG output generated from the outer electrode ring, and a tCRE output. 

The tCRE electrodes were placed on an EEG cap with connection holes in accordance with the 10/5 

system (figure 4), a higher density extension of the more traditional 10/20 system. Prior to placement 

of the EEG cap on the participant, an alcohol solution was used to scrub the participant’s scalp, 

reducing impedance prior to the application of conductive gel. Midline markers were drawn on the 

participant’s head by finding half the distance between each tragus, and between the inion and 

nasion. With midline markers drawn, the intersection between these lines represented the centre of 

the head and aligned with the location of Cz, seen in figure 4.  

Once complete, the EEG cap was aligned with the centre point and secured tightly to the participants 

head to minimise movement. A single disc electrode was placed on the EEG cap as a reference, 

before applying Abralyt (Neurospec, Switzerland) conductive gel. It should be noted that tCRE 

electrodes have an intrinsic reference and as such do not require a reference electrode. However, 

for the amplifier to function correctly, a reference electrode must be included regardless. For 

consistency with the previous study (Ostendorf, 2022), the reference electrode was placed at Fz, 

located equidistant between hemispheres. Three tCRE electrodes were placed along the midline at 

Fpz, POz and Oz for use in preliminary diagnostics. Prior to commencement of the experiment, 

participants were asked to perform a series of tasks, such as eyes blinking or closed eyes relaxation. 

By examining the presence of heightened alpha band (8-12 Hz) activity in these diagnostic 

electrodes, the correct placement of the EEG cap was confirmed. Finally, ten electrodes were placed 
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over the left (FCC5h, FCC3h, C3, CCP5h & CCP3h) and right (FCC4h, FCC6h, C4, CCP4h, CCP6h) 

hemispheres of the sensorimotor cortex. These electrodes were to be used to detect event related 

desynchronisation occurring during any of the movements performed. 

Figure 4 EEG montage of the experimental setup in accordance with the 10/5 system. The black 
electrode locations are derived from the standard 10/20 system, with grey and white electrode 
locations derived from the 10/10 and 10/5 systems, respectively. The location circled with purple (Fz) 
correlates with the position of the reference, while the midline electrodes marked with blue were used 
in preliminary diagnostics. The electrodes marked with green were located over the sensorimotor 
cortex and were used for observing ERD during the experiment. (Ostendorf, 2022) 

EMG Electrode Configuration 

Three electrodes were adhered to the participant’s right forearm, correlating with the arm involved 

in the target movements of the experimental protocol. Two electrodes were placed over the extensor 

digitorum, responsible for extension of the four medial digits and the primary muscle involved in the 

target movements. The tertiary electrode was used as a ground and was located distally on the 

forearm. 

Figure removed due to copyright restriction.
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Experimental Protocol 

Motor Imagery Paradigm 

The experimental protocol used was a form of motor imagery paradigm that incorporated real and 

imagined movements to trigger an event related desynchronisation. As part of the experimental 

protocol, three separate hand movements were to be performed using the participant’s right hand. 

Between movements, the participant was asked to keep their right forearm pronated on the desk 

with their hand in a relaxed but enclosed fist. By resting the participant’s arm on the desk, it was 

hoped that this would reduce unnecessary movements of the arm, minimising potential muscle 

artefacts and decreasing fatigue during the protocol. The ‘half stretch’ movement involved the 

participant unfurling their fingers from a fist, without total extension. The ‘full stretch’ movement 

involved the participant fully extending their fingers. The ‘imagined’ movement involved the 

participant keeping their hand in a resting position and imagining full extension of the fingers. 

Participants were situated in front of a computer which displayed a series of prompts to guide them 

through the protocol. Prior to initiation of the protocol, an introduction was displayed on screen, telling 

the participant to minimise unnecessary movements during each instruction segment, as well as 

explain the three target movements. Prompts were displayed visually on-screen as well as delivered 

verbally. After introducing the target movements, a period was given for the participant to practice 

each of the movements until they felt comfortable. Participants were given a prompt to continue with 

the experiment, once they felt sufficiently prepared with the target movements. 

Figure 5 Target movements performed as part of the experimental protocol. Participants were given a 
video prompt to perform one of the three movements, accompanied with a bell sound to signify when 
movement should occur. Half and full stretch movements involved extension of the fingers by 
contraction of the extensor digitorum in the forearm, with half and full movements distinguished by 
the amount of extension performed. Imagined movement involved imagining full extension of the 
fingers without any physical movement (Ostendorf, 2022). 

Once the participant was ready, the recording phase commenced, consisting of 60 movements, 

divided equally between half, full and imagined stretches. The 60 movements were subdivided into 

6 groups of 10, with resting periods dispersed in-between. By providing adequate resting 

opportunities between each movement block, it was hoped that this would reduce mental and 

physical fatigue in the participant, as well as allow opportunities for free movement to reduce 

Figure removed due to copyright restriction.
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fidgeting during the recording periods. The target movement prompts were ordered randomly 

throughout the protocol, to minimise participants anticipating movements. Each prompt was 

displayed on-screen for a period of 5 seconds, accompanied with a bell sound to signify when the 

participant should perform the movement. Each prompt was faded onto the screen over a period of 

0.8 seconds. By including a fading transition, it was hoped that any P300 response to the stimulus 

could be avoided. An interval of 2 seconds was included between prompts to ensure there was 

sufficient time for the sensorimotor cortex to return to baseline after an event related 

desynchronisation.  

Figure 6 Layout of each video prompt. From 0 to 0.8 seconds, a fade in transition was used to avoid 
triggering a visual P300. From 1.3 to 3.3 seconds, a soft bell sound was played to signify when 
participants should conduct the designated movement, with a fade-out transition also included from 
4.3 to 5 seconds. Event markers were distributed at each of the marked times for use in the processing 
phase. (Ostendorf, 2022) 

Event markers were distributed at the beginning and end of each transition, as well as either side of 

the sound playing, in order to simplify tracking EEG activity in regard to the target movements. 

Additionally, the type of movement performed (half, full & imagined) was marked, to simplify sorting 

the movements during processing. 

EEG Signal Processing 

Processing of the collected EEG data was performed in MATLAB utilising the EEG3, Signal 

Processing and Statistical & Machine Learning toolboxes. Using the event markers included during 

the recording phase, the EEG recording could be subdivided into a series of epochs for use in 

visualising ERD, as well as in classifier training. To establish a baseline to determine if an event 

related desynchronisation occurred, one second of data was taken from before the start marker. To 

process the EEG data, a method put forward by Pfurtscheller & Lopes da Silva (1999) was used 

involving: 

• Bandpass filtering the target frequency band (8-12 Hz)

• Squaring of amplitude samples to obtain power samples

• Epoching participant data, separating by electrode and target movement

Figure removed due to copyright restriction.
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Using the baseline segment prior to each start marker, from -1 to 0 seconds, a reference value was 

determined for calculating the relative ERD observed during the movement. From Pfurtscheller & 

Lopes da Silva (1999), the relative ERD was calculated for each epoch by using equation 1, where 

the variable 𝐴 is substituted with the recorded power. 

Equation 1 Converts the ERD to a percentage change in mu power amplitude, based on a baseline 
reference, R, extracted from -1 to 0 seconds. 

 

EMG Signal Processing 

The EMG data was processed using a similar method (Pfurtscheller & Lopes da Silva, 1999), for use 

in observing muscle activity during the movements performed: 

• Bandpass filtering the target frequency band (8-12 Hz) 

• Squaring of amplitude samples to obtain power samples 

• Epoching participant data, separating by electrode and target movement 

The EMG data was collected to observe the expected differences in muscle activity during half, full 

and imagined movements. As the imagined movement required the participant to keep their hand 

relaxed, the EMG was of particular interest to confirming that these instructions were complied with. 

Classification 

Electrode Selection 

In brain computer interfaces, it is desirable for the sensory modality used to be simple and 

unintrusive. It is not feasible for users to wear a full EEG setup constantly, as it would be difficult and 

time consuming to set up and the inclusion of additional wires may limit movement and 

manoeuvrability even further. To simulate use in a BCI, a single electrode was picked for each 

participant, based on the electrode displaying the greatest difference in mu rhythm power between 

synchronised and desynchronised states. A script was created in MATLAB (see appendix A) to 

calculate the difference in mean time amplitude between the baseline segment from -1 to 0 seconds, 

and the movement segment, from 0 to 5 seconds. The reported best-performing electrode for each 

participant was collected for both emulated EEG and tCRE, seen in table 1. 

 

 



Table 1 Electrodes demonstrating the greatest change in mu band power during an event related 
desynchronisation, ordered by participant and sensory modality used. 

Participant 1 2 3 4 5 6 7 

Emulated EEG CCP6h CCP5h FCC5h CCP4h FCC5h FCC4h CCP5h 

tCRE EEG CCP6h FCC5h FCC5h CCP6h FCC5h CCP6h FCC4h 

Support Vector Machine 

To allow for comparison with results collected during the previous project (Ostendorf, 2022), and to 

answer RQ2: What differences can be observed in event related desynchronisation between tCRE 

and emulated EEG? a support vector machine was trained from the collected EEG data. As part of 

this method, the feature space of the data used was reduced by resampling epochs at 300 Hz, rather 

than 1200 Hz, sufficiently high to avoid aliasing while decreasing the complexity of the support vector 

machine substantially. For comparison with Ostendorf (2022), the dataset used for training and 

testing the support vector machine was derived by subdividing each epoch into 3 training samples. 

A 1-second sample was collected from before and after each movement block (-1 to Os & 5 to Gs, 

respectively) correlating with synchronised mu activity and defined as 'class 1 '. The remaining 

sample was collected from the middle of the event block (2 to 3s), correlating with desynchronised 

mu activity, and defined as 'class 2'. As such, given 3 samples were collected per epoch, with 60 

epochs collected per participant, a dataset consisting of 540 samples was created for each 

participant. 

Figure 7 Annotated layout of each video prompt for generation of training samples. The regions marked 
in blue (-1 s to Os & Ss to 6s) were extracted from either side of the video prompt and correlated with 
synchronised mu activity, labelled as 'class 1'. The region marked in green (2s to 3s) was extracted 
from the middle of the video prompt, corresponding to mu desynchronisation and labelled as 'class 
2'. (Ostendorf, 2022) 

The support vector machine was trained using leave-one-sample-out (LOSO) cross-validation. 

Leave-one-sample-out is a variation of leave-one-subject-out, which is typically used for reducing 

subject bias in classifiers trained on multiple participant datasets. Using LOSO cross-validation, a 

single sample is used for testing, while the remaining samples are used during testing. This process 

is repeated, cycling through every sample to determine the performance of the classifier. Note that 

each classifier was trained on a dataset from a single participant, rather than from all participants. 
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Figure removed due to copyright restriction.
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While the general mechanisms for event related desynchronisation are the same in all people, the 

signals themselves are highly individualistic. While generalisation is beneficial in that the BCI could 

be used by more people, BCI is an assistive technology designed to suit the individual. As such it 

would be better to train the classifier on an individual specifically, capturing idiosyncratic 

characteristics and ensuring better performance. 

 

Figure 8 Leave-one-sample-out cross validation. In LOSO cross-validation, a single sample is reserved 
for use as the testing dataset, while the remaining samples are used for training the classifier. To 
determine overall classifier performance, this process is repeated, such that every sample has been 
isolated for use in testing. 

Neural Network 

Extending from previous work and to answer RQ4: What differences in training performance can be 

observed between support vector machine and neural network algorithms? a neural network was 

also trained using collected EEG data. To increase the size of the training set, as well as improve 

classifier adaptability, the entire epoch was subdivided into 0.5 second training segments. Segments 

located outside of the movement markers (<0s & >5s) were marked as synchronised mu and 

assigned to class 1, while segments located between were marked as desynchronised mu and were 

assigned to class 2. The meantime power of each segment was calculated and stored for use in 

training the neural network. Various network sizes were used, with the results displayed using a 

smaller network topology that included two hidden layers with four nodes each. By using a smaller 

network, it was hoped that training times could be kept low, while achieving acceptable performance. 

To avoid biasing the neural network towards either class, a script was created to measure differences 

in the size of the two classes and randomly remove samples such that both classes had the same 

number of samples included (see appendix B). 
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Figure 9 K-fold cross validation. In K-fold cross validation, a dataset is subdivided into K folds, with 
K-1 folds used as a training set for the classifier. The remaining fold is then used during testing. This
process is repeated such that all folds have been used in both training and testing phases.

The neural network was trained using K-fold cross validation. In K-fold cross validation, the dataset 

is subdivided into K sets of data, with one set reserved as testing data, and the remaining being used 

during training. The process of training and testing is then repeated K times such that every fold has 

been used as testing, with the performance determined by finding the mean and standard deviation 

between folds. 
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RESULTS 

Event Related Desynchronisation 

Emulated EEG 

To answer RQ2: What differences can be observed in event related desynchronisation between 

tCRE and emulated EEG?, the event related desynchronisation was plotted, relative to an initial 

baseline defined from -1 to 0 seconds. Examining the processed EEG data from participant 1, seen 

in figure 10, a noticeable decrease in relative power within the mu frequency band could be observed 

across all movements from 1 to 4 seconds before gradual resynchronisation, indicating successful 

demonstration of ERD. Note that the vertical lines in each graph correlate with the timings of the 

event markers. Black markers signify the beginning and end of the video, blue lines indicate the 

timing on the fading transition, and the red lines signify when the bell sound was played. 

Figure 10 Mu frequency band activity for participant 1, separated by electrode and movement. Mu 
power was measured as a percentage change, relative to an initial baseline generated from -1 to 0 
seconds. Across all electrodes and movements, an event related desynchronisation could be 
observed, marked by the substantial decrease in mu band power from 1 to 4 seconds. It was noted 
that there was little mu resynchronisation present in the imagined movement, compared with both 
strong and half movements.  
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Figure 11 Electromyograph activity of participant 1, averaged across epochs and separated by 
movement. As expected, strong movements involving maximal extension of the extensor digitorum 
produced a substantially larger EMG response, compared to the other movements. Two peaks were 
noted in the EMG, likely correlating to extension and then flexion of the fingers. Partial movements, 
displayed in orange exhibited these same two peaks in EMG activity, with reduced amplitude compared 
with strong movements. Imagined movements produced negligble EMG activity, indicating that 
participant 1 maintained relaxation while imagining full extension of the fingers. 

Examining figure 11, the recorded electromyograph activity for participant 1 can be observed across 

each of the target movements. As expected, strong movements demonstrated the highest amplitude 

increase during movement, with dual peaks at the beginning and end of the movement. Similarly, 

partial movement also demonstrated elevated EMG activity, albeit to a reduced degree. Importantly, 

EMG activity was substantially reduced from both half and full movements, with no dual peak 

observable. As such, it was likely that the EMG present was mostly external noise or artefacts from 

other muscles, rather than movement of the forearm, specifically. 
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Figure 12 Emulated EEG Group average relative mu band power, separated by electrode and 
movement. Strong movement demonstrated a slow decrease in mu power, with an approximate 40% 
decrease over 3 seconds, before resynchronising. Half movement demonstrated a sharper decrease 
in mu power over 2 seconds, before substantial resynchronisation above the baseline. Most notably, 
imagined movement appeared to demonstrate an increase in mu band power of almost 100%. 

Examining figure 12; the emulated EEG group average, event related desynchronisation can be 

observed across all electrodes, averaged across participants. As expected, a decrease in relative 

mu band power can be observed in the strong and half movements, indicating the presence of ERD. 

Interestingly, the group average imagined movement response demonstrated an increase in relative 

mu band power, deviating from the real movements. 
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Figure 13 Absolute ERD group average using corresponding best channel. Best channels were 
determined for each participant by finding the electrode recording the greatest desynchronisation. 
Across all movements, a desynchronisation of 50-60% was observed. Both strong and half movements 
demonstrated a noticeable resynchronisation from 4 to 6 seconds. Imagined movement had little 
resynchronisation occur after movement completion. 

Averaging the best performing channel across participants, figure 13 shows the resulting response. 

Across all movements, event related desynchronisation could be observed, occurring between 0 and 

1.8 seconds. Both strong and half movements demonstrate an obvious resynchronisation of relative 

mu power from 4 seconds. In contrast, imagined movements had little obvious resynchronisation 

occurring even up to 10 seconds. 
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tCRE EEG 

To answer RQ1: Can event related desynchronisation be observed using tripolar concentric ring 

electrodes?, the event related desynchronisation of participant 1 was again plotted, instead using 

tCRE. Examining figure 14, the presence of ERD is substantially less obvious, with limited similarities 

between electrodes. 

Figure 14 Participant 1 mu band power using tCRE, separated by electrode and movement. Electrode 
activity appeared more chaotic, suggesting reduced cohesion between electrodes. The presence of 
event related desynchronisation isn’t obvious, likely present only in electrodes close to the region of 
activation. 
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From the group-average tCRE, a desynchronisation of 25-50% was observed across all movements 

from 2 to 4 seconds, seen in figure 15. Examining figure 15, it was noted that there was no surge in 

mu band power in the imagined movement, indicating not only that the outlier was a result of a 

muscle artefact, but also that the tCRE was capable of attenuating this artefact. This supports the 

claim that tCRE is better at attenuating distant noise sources. 

Figure 15 Group average relative mu band power, separated by electrode and movement. Strong 
movement demonstrated a slow decrease in mu power, with an approximate 30% decrease over 4 
seconds, before resynchronising. Half movement demonstrated a similar decrease in mu power over 
2 seconds, before resynchronisation back to baseline. Imagined movement demonstrated sharp 
desynchronisation, before gradually resynchronising over 3 seconds. Interestingly, there was no 
outlier in the imagined movement as in the emulated EEG data, suggesting that tCRE successfully 
attenuated the disturbance that caused it. 
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Averaging the best performing electrode across participants, the group average response for each 

movement was determined. From figure 16, event related desynchronisation could be observed 

across all movements, indicating success with detecting ERD using tCRE. Both strong and half 

movements demonstrate resynchronisation of mu band power from 5 seconds, while imagined 

movement shows little resynchronisation occurring. 

Figure 16 tCRE absolute ERD group average using corresponding best channel. Best channels were 
determined for each participant by finding the electrode recording the greatest desynchronisation. 
Across all movements, a desynchronisation of approximately 50% was observed. Both strong and half 
movements demonstrated a noticeable resynchronisation from 4 to 6 seconds, exceeding baseline. 
Imagined movement appeared to resynchronise quickly, returning to baseline by 3 seconds. 

Classification 

Support Vector Machine 

Classifiers were tested on participants individually using the best performing electrode. To answer 

RQ3: How does training an ERD classifier on tCRE data influence accuracy, in comparison to 

ordinary and emulated EEG?, a support vector machine was trained using tCRE and emulated EEG. 

To determine classifier performance, LOSO cross-validation was used on each participant, with the 

mean performance determined. A confusion matrix of the performance across participants using 

emulated EEG was created, seen in figure 17(left). From the confusion matrix, a mean accuracy of 
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66.8%± 3.71 was reported for emulated EEG, with each classifier demonstrating notable 

favourability towards class 1 (synchronised mu). 

Figure 17 Support vector machine group average confusion matrices. Trained on the emulated EEG 
(left) and tCRE (right) datasets. A noticeable difference in the values of either half can be observed, 
with class 1 predictions accounting for 88%. This suggests very strong favourability towards class 1 
(synchronised mu activity).  

Similarly, a support vector machine was also trained using participant tCRE data, with a group 

confusion matrix displayed in figure 17(right). Using tCRE, the support vector machine achieved a 

mean accuracy of 65.6%± 1.69, comparable to emulated EEG performance. Examining figure 

17(right), it was again noted that there was clear favourability towards class 1 (synchronised mu), 

indicating the potential presence of class bias. 

Neural Network 

To answer RQ4: What differences in training performance can be observed between support vector 

machine and neural network algorithms?, a neural network classifier was trained, to compare its 

reported performance with that of the tested SVM. Each neural network was trained on data collected 

from a single participant, first on emulated EEG, then on tCRE. A confusion matrix was generated 

of the neural network’s performance, seen in figure 18(right). The neural network achieved an 

accuracy of 58% using emulated EEG, notably lower than with the support vector machine. Analysis 

of the confusion matrix in figure 18(right) also shows slight favourability towards synchronised mu 

activity (class 1). Extending across all participants, the accuracy of the neural network was calculated 

as 51.7%± 1.01 for emulated EEG. It was noted that since each confusion matrix was generated 

over a single K-fold iteration, and hence didn’t include averaging, the reported accuracy of the 

confusion matrix was higher than the actual performance of the network. 
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Figure 18 Neural network confusion matrices for participant 1, trained on the emulated EEG (right) and 
tCRE (left) datasets. Despite balancing the class distribution used during training, the emulated EEG 
classifier still demonstrated favourability towards predicting class 1 (65% of predictions). The tCRE 
classifier showed more balanced class prediction, with only 52% of predictions for class 1. 

After analysing the emulated EEG dataset, the neural network was reconfigured to be trained from 

tCRE data instead. Examining figure 18(left), a confusion matrix was generated from participant 1, 

indicating an accuracy of 57%, comparable to the results achieved using the emulated EEG dataset. 

It was noted that the tCRE dataset appeared to lean less heavily towards class 1 predictions, with 

predictions distributed evenly on the confusion matrix. Extending across all participants, the neural 

network classifier achieved an accuracy of 52.7%± 0.90, indicating slightly higher accuracy, 

compared with emulated EEG. 
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DISCUSSION 

Comparison With Literature 

Experimental Protocol 

As part of meeting RO1: Using a motor imagery paradigm, collect EEG data with tCRE, modifications 

were made to the protocol proposed by Ostendorf (2022) to utilise tripolar concentric ring electrodes. 

Burianova et al (2013) proposed a novel paradigm for implementing motor imagery in 

magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The paradigm 

involved the real and imagined flexion of the fingers, consisting of four blocks of four movements, 

separated by 21 second rest blocks. It was noted in this study that despite the inclusion of longer 

rest times between movement blocks, all participants reported greatly elevated fatigue, suggesting 

that fewer blocks may be beneficial in reducing fatigue. It was noted that Burianova et al (2013) 

included a 30-minute training session 48 hours prior to participation with the experiment, simulating 

10 trial runs through the protocol and ensuring familiarity. Examining the recorded electromyograph 

activity between participants within this study, it was noted that two participants demonstrated 

elevated EMG during imagined movements, indicating potential BCI illiteracy and difficulty with the 

paradigm. The percentage of participants struggling with the motor imagery paradigm (approx. 30%) 

aligns with BCI illiteracy rates within the literature, with similar studies testing the motor imagery 

paradigm reporting between 10% and 50% of participants struggling (Qiu et al. 2017 | Zhang et al. 

2021). By including more extensive training in the experimental protocol, as in Burianova et al (2013), 

it may be possible to subsequently improve familiarity with the movements and lead to an improved 

outcome. Alternatively, the inclusion of several follow-up sessions for participants using the same 

protocol may allow for increased practice, improving familiarity with the protocol, although it is 

unclear if this would significantly improve reported BCI illiteracy. 

Event Related Desynchronisation 

Examining the review of event related desynchronisation in EEG by Pfurtscheller and Lopes da Silva 

(1999), several examples of ERD could be used as comparison. As in figure 2, their figures presented 

event related desynchronisation initiating before their trigger, with a decrease of 50 to 100% within 

the relative amplitude of the mu frequency band during desynchronisation. Examining the response 

of participant 1, seen in figure 10, a 50 to 70% decrease in the mu frequency band was observed 

across all movements. While the change in amplitude was less than reported by Pfurtscheller and 

Lopes da Silva, it is indicative of event related desynchronisation occurring, partially fulfilling the 

requirements of RO2: Identify the presence of event related desynchronisation within emulated EEG 

and tCRE EEG data. Examining the group average response in figure 12, a decrease in amplitude 

of approximately 30% was observed, noticeably less than in figure 10, indicating that some 

participants may have demonstrated a reduced desynchronisation in association with the 

movements. 
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It was noted when examining the group average imagined movement response in figure 12 that there 

was an increase in mu band power, contrary to what was observed in participant 1, and within the 

literature itself. Comparing with Ostendorf (2022), a similar phenomenon was observed, occurring 

as an outlier during the recording phase. Examining each participant individually, it was noted that 

participant 6 recorded a 1200% increase in mu band amplitude from baseline, which could not be 

observed in other participants. An increase in amplitude of that magnitude was unlikely to occur from 

brain activity, indicating the potential presence of muscle artefacts. While participant 6 did 

demonstrate elevated EMG activity during the imagined movement segments, it was insufficient to 

explain the presence of elevated mu. It was theorised that this may have been the result of 

unintentional head movement during the imagined movement segment, causing a massive 

disturbance in reported mu rhythm power. 

Figure 19 EMG activity of data outlier; participant 6. One discrepancy noted was that strong movement 
exhibited less power than the partial movement. Additionally, it was noted that EMG activity occurred 
during the imagined movements. The results indicate that the participant may have struggled or had 
poor understanding of the movements required. 
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To fully satisfy RO2: Identify the presence of event related desynchronisation within emulated EEG 

and tCRE EEG data, the response of each participant using tCRE was also examined. Figure 14 

correlates with the response of participant 1 across movements. Comparing directly with figure 10, 

it was noted that the data collected by tCRE appeared far more chaotic, indicating that signals were 

more distinct between electrodes. Literature has shown that EEG conducted with tCRE exhibits 

reduced mutual information between electrodes (Koka et al. 2007 | Liu et al. 2013). It was theorised 

that the noticeable differences in the activity of each electrode in the tCRE data was a result of this 

decreased mutual information, with desynchronisation more localised to specific electrodes closer 

to the activated region. To better visualise ERD, the electrode demonstrating the greatest change in 

mu band activity was used and averaged across participants, seen in figure 16. An approximate 30% 

decrease in mu band power was observed across all movements, aligning with the group average 

response using emulated EEG, and demonstrating that tCRE can be used to identify ERD. To 

answer RQ2: What differences can be observed in event related desynchronisation between tCRE 

and emulated EEG?, the decrease in mu band power during ERD is comparable between modalities. 

Although the literature around using tCRE for the detection of ERD is limited, one dissertation 

produced similar results, observing event related desynchronisation with reduced coherence 

between neighbouring electrodes (Alzahrani, 2019). Another study found that tCRE demonstrated 

improved cancellation of distant noise sources, with a similar level of performance identifying ERD 

between tCRE and emulated EEG (Tang, 2021). 

Classifier Performance 

To answer RQ3: How does training an ERD classifier on tCRE data influence accuracy, in 

comparison to ordinary and emulated EEG?, a support vector machine was trained on participant 

tCRE and emulated EEG data. A mean accuracy of 66% was achieved using emulated EEG, with a 

comparable mean accuracy of 65% achieved using tCRE. This would suggest that despite offering 

improved spatial selectivity, tCRE has no perceived advantage over emulated EEG in the training of 

support vector machine classifiers. One study that tested the effects of movement complexity on 

classification performance with support vector machines reported a mean accuracy of 84% for simple 

dynamic visual tasks (Bian et al. 2018). It was noticed that one distinction between methodologies 

was that they used a 64-channel EEG setup, selecting 35 channels for use in training their classifier. 

It is possible that a reason for the difference in reported accuracies could be attributed to this 

difference in channels used, with additional channels potentially providing more robust information 

for training the classifier. Furthermore, participants in Bian et al (2018) performed 200 movements, 

compared to the 60 movements per participant in this study. It is highly likely that this also contributed 

to the difference in reported accuracies. To evaluate the credibility of this theory, the support vector 

machine was retrained, using all electrodes, rather than only the best performing electrode. 

Examining the new confusion matrix, seen in figure 20, a substantially higher accuracy of 88% was 
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observed, aligning more closely with the results put forward by Bian et al (2018), suggesting that the 

number of channels used has a large impact on classifier performance. 

Figure 20 Confusion matrix of support vector machine performance on participant 1 using all 
electrodes. The reported accuracy for both emulated EEG (left) and tCRE (right) was 88%, substantially 
higher than with a single electrode and aligning more closely with the results found in the literature. 

To answer RQ4: What differences in training performance can be observed between support vector 

machine and neural network algorithms?, a neural network classifier was also trained on emulated 

EEG and tCRE datasets. A mean accuracy of 51.7% was achieved using emulated EEG, while tCRE 

achieved a mean accuracy of 52.7%, substantially less than the observed performance of the 

support vector machine. A study by Sharma et al (2022) comparing support vector machine and 

neural network classifiers found opposing results, with the neural network demonstrating a slightly 

higher overall accuracy (82% versus 80%). It was noted that participants in that study were asked to 

perform 420 movements, providing a significantly larger training set. Additionally, more channels 

were used for training their classifier (35 versus 1), which likely contributed to their higher reported 

performance. Nicolas-Alonso et al (2012) does suggest that while neural networks can demonstrate 

better performance compared to support vector machines, their performance is more reliant on larger 

datasets, corroborating the deviation in reported accuracy with the literature. In hindsight, it was also 

noted that the number of features used for the neural network was too small, likely contributing to 

the poor reported accuracy. 

It was noted analysing figure 17, that there was an apparent bias in the dataset towards class 1 

(synchronised mu) activity. Re-examining the methodology used, there was an imbalance in the 

distribution of classes used in training, as two thirds of samples were taken from synchronised mu 

activity, seen in figure 7. As this apparent class imbalance was included in the training set, the 

support vector machine was biased in favour of class 1. To correct for bias, subsequent testing was 

performed, with an evenly balanced class distribution, with negligible changes in reported 

performance. Examining figures 13 and 16, it was noted that the synchronised mu activity 
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demonstrated a greater range of amplitudes, with the range of desynchronised mu values 

overlapping. As such, it was hypothesised that this may have caused the increased favourability of 

class 1 in both support vector machine and neural network classifiers. 

Future Work 

One major limitation with this study was the small dataset used for training both classifiers. By 

increasing the dataset available during training, reported performance could potentially be improved. 

As all participants tested noted fatigue from the protocol, extending the lengths of each session may 

not be reasonable, as this may lead to reduced participant performance. The use of subsequent 

sessions is another method that could increase the training dataset available. Furthermore, it would 

be valuable to investigate if additional training and familiarity with the protocol over subsequent 

sessions would improve participant performance in the motor imagery paradigm, potentially reducing 

reported BCI illiteracy. 

Additionally, it would be interesting to test and compare different classifiers in the experimental 

protocol followed. Recent studies have demonstrated that convolutional neural networks can be used 

effectively in motor imagery tasks (Echtioui et al. 2023), with reduced network size allowing for faster 

convergence. Recurrent neural networks also offer an alternative classification method which has 

been shown to achieve comparable performance with convolutional neural networks (Ma et al. 2018). 

Since recurrent neural networks are perform particularly well in classifying temporally sequential 

datasets, they may be well-suited in real-time BCI. 

Finally, by comparing figures 17 and 20 that the number of channels used in SVM training greatly 
impacts the resulting performance of the classifier. Future work should examine this relationship 
more closely, balancing the needs of BCI to rely on less electrodes, with the increased performance 
gained by using more channels. Ideally some minimum channel number can be determined such 
that classifier accuracy isn’t significantly impacted. 
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PROJECT OUTCOMES 

Conclusion 

As part of chapter one, background information regarding neurodegenerative disorders and the 

current state of brain computer interfacing was provided to contextualise this project. For the project 

to be considered successful, a series of research questions were developed, with a complementary 

set of research objectives put forward to answer these questions. 

Chapter two provided an overview of the current literature surrounding BCI research, with a particular 

emphasis on three key areas: sensory modality, experimental paradigm and classification technique 

used. From this literature review, a gap statement was produced to highlight a potential project for 

contribution to the literature. To that end, it was proposed that tCRE electrodes could be combined 

with a previously developed motor imagery paradigm that uses real and imagined movements. It 

was hypothesised that by utilising tCRE electrodes, noise artefacts could be reduced, resulting in 

improved classifier performance.  

Chapter three detailed the methodology used in this project, subdividing it into three sections, 

focusing on data collection, the experimental protocol used, and the techniques used for 

classification. To achieve RO1: Using a motor imagery paradigm, collect EEG data with tCRE, data 

collection was performed using 13 tCRE electrodes connected to a CREmedical t-interface 20. As 

part of the classification phase, a support vector machine was trained on emulated EEG and tCRE 

data using LOSO cross-validation, satisfying RO3: Develop a support vector machine classifier for 

comparing emulated EEG and tCRE performance with previous work. A neural network classifier 

was included and trained using K-fold cross-validation, meeting the requirements for RO4: 

Experiment with neural network classifiers for identifying event related desynchronisation. 

Chapter four highlighted the results of the project. Examining individual and group average graphs 

collected, decreased power of the mu frequency band could be observed in both emulated EEG and 

tCRE, answering RQ1: Can event related desynchronisation be observed using tripolar concentric 

ring electrodes?. To answer RQ2: What differences can be observed in event related 

desynchronisation between tCRE and emulated EEG?, a comparison was performed between 

emulated EEG and tCRE. It was noted that tCRE demonstrated less visual cohesion between 

electrodes, compared with emulated EEG. Examining the group average of the ‘best-performing’ 

electrodes used showed similarities in the desynchronisation measured between the two modalities, 

suggesting that tCRE does reduce mutual information and improve electrode selectivity. 

Chapter five discussed the results of the project in the context of the literature. The performance of 

a support vector machine was compared between tCRE and emulated EEG, with an additional focus 

on results in similar studies. It was found that tCRE provided no additional benefit to classifier 
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performance, answering RQ3: How does training an ERD classifier on tCRE data influence accuracy, 

in comparison to ordinary and emulated EEG?. Similarly, examining the performance when training 

a neural network classifier yielded the same results; tCRE provided no add benefit to classifier 

performance, answering RQ4: What differences in training performance can be observed between 

support vector machine and neural network algorithms?. Classifier performance was notably lower 

than in the literature, suggesting alterations may be necessary to the methodology used. It was 

theorised that this discrepancy in performance is likely a result of only using a single electrode, which 

may remove too much information, rendering more accurate classification impossible. Retraining the 

support vector machine on all electrodes appears to confirm this, citing a higher accuracy. Future 

studies should investigate this further, minimising the number of electrodes used while maintaining 

comparably high performance. 
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APPENDICES 

Appendix A 

Check Desynchronisation Script 

Script designed to take participant data and find the mean channel value for each time segment. The 

greatest difference in value signifies the greatest desynchronisation, which determined the 

appropriate channel used in training. 
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Appendix B 

Class Rebalance Script 

Since the number of samples belonging to each class was initially different, this script was designed 

to arbitrarily remove samples such that both class 1 and 2 datasets had the same number of samples 
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Appendix C 

Create Segments Function 

Function designed to separate participant data into segments for creation of a training dataset 
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Appendix D 

Training Dataset Creation Script 

Creates a training dataset for use in a neural network by calling create_segments (Appendix C) and 

finding the mean for each time segment. Once complete a data is normalised and stored in a ‘.dat’ 

file for use in training. 




