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Summary 

This thesis investigates the distribution of microbial taxonomy and metabolism along a 

continuous natural gradient of salinity and nutrient concentration, the Coorong lagoon, Australia.  

By applying Next-Generation DNA sequencing techniques, I use this system as a model to 

observe the relative influence of local habitat variability on sediment microbial community 

structure. I also use the Coorong as a reference point to determine global scale determinants of 

metagenomic patterns in microbial diversity.  My data demonstrated strong shifts in the 

abundance of both bacterial and archaeal taxonomic groups along the gradient coupled to an 

overrepresentation of genes involved in halotolerance and photosynthesis in the most hypersaline 

samples relative to the marine salinity samples used as a baseline.  Whilst these gradient driven 

shifts indicate the influence of salinity and nutrient content on microbial community structure, 

the overall genomic signature of the community remained conserved along the gradient.  When 

this signature was compared to other metagenomes from a variety of habitats and salinities, 

Coorong samples were most similar to other sediment and soil habitats which formed a discrete 

‘sediment’ cluster regardless of salinity variation.  This indicates for the first time the 

fundamental role of substrate type in determining microbial community metabolism and 

highlights the hierarchical nature of variables acting on different scales of community 

organization.  
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GENERAL INTRODUCTION 

Microbial biogeography in the age of ecogenomics 

Microbial biogeography is commonly conceptualized using the Baas-Becking hypothesis (1, 2), 

that “everything is everywhere but the environment selects”, which is interpreted as meaning 

there is a cosmopolitan distribution of prokaryotic species from which certain taxa may become 

abundant in response to localized physiochemical parameters.  This proposed cosmopolitan 

distribution implies that the overall diversity of microbes present is the same in all habitats, but 

that sampling detects the most abundant and active members of a community, that which in turn 

reflects those best adapted to the current ecological state. Effectively, this says the majority of 

species are present at an abundance level below the detection limit of traditional technologies, 

and at the detection limit of current technologies.   

An exception to the Baas-Becking hypothesis appears to be extreme habitats (19, 26), where  it 

appears that some taxa are not cosmopolitan, however, generally speaking the Baas-Becking 

hypothesis is applicable given a sufficient depth of sampling.  For ocean microbial biogeography 

in particular, where given enough time Atlantic water becomes Pacific water, the reality is 

unlikely to be the binary concept of presence or absence, nor, to take the Baas-Becking 

hypothesis to a heuristic extreme, that all microbial species are found in a milliliter of seawater. 

Instead, it seems more likely that each species or strain dies out in many places while thriving in 

many others, which can be interpreted as continuing shifts in the relative abundance of 

operational taxonomic units or microbial genes in response to ecological conditions on varying 

scales, rather than presence or absence of given taxa in a habitat. One way to begin to resolve 

actual microbial dynamics is not to look at them in a uniform environment, but instead to 
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examine the dynamics across gradients that approach the biogeographical scale as is done in this 

thesis. 

Only recently has serious investigation of the Baas-Becking hypothesis been possible. The recent 

development of high-throughput DNA sequencing platforms has led to a revolution in the extent 

to which a microbial community can be described, and has led to fundamental new insights into 

the biogeography of microorganisms.  Deep-sequencing of the 16S ribosomal DNA gene subunit 

has allowed the application of this taxonomic marker to be extended beyond the dozen  or so 

clones traditionally sequenced in libraries to allow for thousands to hundreds of thousands of 

sequences to be analyzed (25). This captures a wider breadth of the diversity of the microbes in a 

habitat and identifies rare organisms in the latent ‘rare-biosphere’ (23).   At the extreme of 

attempting to capture the breadth of metabolic function as well as taxonomy is metagenomics, 

the shotgun sequencing of genomic DNA fragments from the collective ‘metagenome’ of the 

microbial community. This has determined the taxonomic structure and metabolic potential of 

assemblages (10, 12, 28) and has ushered in the possibility of genetic analysis of microbes at the 

ecosystem scale 

These collective tools, often referred to as ‘ecogenomics’, have been used to compare the 

microbial community structure of different habitats and elucidate new biogeographical patterns 

in community composition.  When these patterns are correlated to environmental parameters 

measured at the time of sampling, an explanatory and mechanistic view of how the ‘environment 

selects’ for genes and species can be elucidated.   

Comparisons of metagenomes from a variety of habitats have shown that the overall functional 

potential of microbial communities is broadly determined by the biome from which the sample is 
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derived, with samples clustering into specific habitat groups (4, 27).  This indicates that the local 

physiochemical parameters of the habitat are fundamental determinants of genetic profiles.  

Within the ocean biome, the most well studied habitat to date, global-scale spatial patterns in 

gene abundance correlate to differences in temperature and sunlight, indicating the role of 

climate in determining functional potential (20).  Genes specific to phosphate utilization have 

also been shown to vary along nutrient gradients on this scale (21) and within the Pacific Ocean 

(11), however the overall functional signature within the ocean shows little variability along 

gradients reflecting the core  processes central to life in the surface ocean, such as 

photosynthesis, DNA replication, protein synthesis and carbohydrate metabolism.  On local 

scales however, individual metagenomic profiles show strong vertical zonation of taxonomic 

groups and specific metabolic categories, concurrent with stratified physiochemical parameters 

such as light, oxygen and temperature (3). 

 A detailed understanding of taxonomic patterns, which encompasses the rare organisms present 

in the sample, has been provided by high throughput sequencing of the 16S rDNA gene (25).  

Salinity appears to be the primary determinant of patterns in 16S rDNA phylotype distribution 

globally (16, 24) with the substrate type, whether a sample comes from water or sediment, also 

being an important factor.  The role of salinity is potentially due to the requirement of cells to 

evolve specialist cellular machinery to survive osmotic stress (18).   

The current view of microbial biogeography emerging through use of next-generation 

sequencing techniques is a complex one.   Extreme habitats appear to show some endemism of 

taxa and community structure (19, 26).  Some taxonomic patterns also demonstrate distance 

effects that can be explained by the legacy of historical processes such as dispersal limitation (8, 
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17).  For most metagenomic and high-throughput sequenced 16S rDNA datasets investigated to 

date however, biogeographic patterns seem to be determined by the influence of various local 

contemporary conditions on varying scales (4, 5, 7, 9, 11, 14, 20, 21).  I hypothesize that these 

various determinants of community composition are not mutually exclusive, and that the overall 

profile of the community represents the simultaneous influence of many variables on the overall 

signature of the metagenomes and on individual taxa and metabolic processes within that 

signature.  Put in the context of the Baas-Becking hypothesis, the metagenome as a whole is a 

discrete unit on which ‘the environment selects’ (6) and individual genes and taxa within the 

community are also selected for by local conditions. In reality individual genes are passed among 

microbes creating continually changing gene sets rather than fixed units. 

The Coorong: a model system for microbial biogeography 

Physicochemical gradients provide natural model systems for investigating the influence of 

environmental variables on microbial community structure.  A unique natural continuous salinity 

gradient, ranging from brackish to hypersaline salinities occurs in the Coorong, a temperate 

coastal lagoon located at the mouth of the Murray River, Australia's longest river system. In 

recent decades drought and increased irrigation demands from the Murray river have reduced 

freshwater flows at the estuarine end of the gradient, resulting in markedly increased salinity 

levels and a strong continuous salinity and nutrient gradient along the 100 km long lagoon (13, 

15, 22). The lagoon is defined by a unique combination of water inputs that result in a mixture of 

fresh river water, groundwater, terrestrial runoff, coastal seawater and hypersaline brine.  Thus, 

microbes are dispersed into the system from a variety of sources where they are then exposed to 
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the contemporary gradient in salinity and nutrients along the lagoon, providing an ideal habitat to 

investigate the influence of habitat variability on microbial community structure.   

Overview of the thesis 

In this thesis I use the Coorong lagoon as a model to observe the relative influence of local 

habitat variability on taxonomic and metabolic structure, using next-generation sequencing tools 

to access microbial diversity. I also use the Coorong as a reference point to determine global 

scale determinants of microbial metagenomic distribution.   

Specifically the aims are as follows: 

1. To determine the extent to which sediment microbial community taxonomic composition 

changes with physiochemical parameters along gradients of salinity and nutrients, and to identify 

which taxonomic groups demonstrate the largest shifts.  

2. To determine the extent to which community composition shifts that do occur along the 

gradient are functionally driven by underlying shifts in the abundance of metabolic gene 

categories.   

3. To provide novel insight into localized microbial adaptation to habitat variability at the 

genetic level by determining which metabolic categories shift in response to continuous gradients 

of salinity and nutrients.    

Our four sampling points are reference stations within an overall sampling scheme employed by 

our laboratory and other groups from various institutions investigating the Coorong (e.g. 15). 

Previous work (22) has shown these sites to be characteristic of different physiochemical regions 
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of the lagoon and to harbour distinct pelagic microbial communities.  Thus, the increment in 

salinity between each site is not uniform.  Each sample thus represents a discrete habitat within 

the overall continuum of the physiochemical gradients present with clear but varying differences 

in salinity and other variables such as nutrient content and microbial abundance (Table 1). 

Each chapter of the thesis is formatted as a manuscript for journal submission, each addressing a 

specific question and aim.   Thus there is some redundancy in the introduction and methods of 

each chapter, which was necessary to make each a complete manuscript. Chapters 1 and 2 

employee tag encoded FLX amplicon pyrosequencing of the 16S rDNA gene (TEFAP).  There is 

a separate dataset for each chapter: a bacterial dataset for chapter 1 and an archaeal dataset for 

chapter  2.  Chapters 3 and 4 utilize the same dataset: metagenomes from the four sampling sites.  

In chapter 3 differences between these four metagenomes are examined.  In chapter 4, these 

metagenomes are compared to a plethora of metagenomes from diverse habitats.  Chapter 5 then 

takes this larger dataset, from chapter four, and further explores the parameters which drive the 

relationships between habitats observed in the previous chapter. The thesis as a whole is 

conceptually divided into two sections; one that deals with the influence of salinity and nutrients 

on Coorong communities (chapters 1,2 and 3) and one that uses the Coorong as a model to 

investigate substrate partitioning within globally distributed metagenomes (chapters 4 and 5).  

The thesis is structured this way to elucidate the hierarchical controlling factors of Coorong 

community composition on the local and global scale.  
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Table 1. Environmental data for Coorong sampling sites.  

Sampling Site 37 PSU 109 PSU 132 PSU 136 PSU 

Salinity (PSU) 37 109 132 136 

pH 8.25 7.85 7.79 8.05 

Temperature (°C) 21 25 27 24 

Ammonia concentration (mgN/L) 0.23 (±0.15) 0.21 (±0.09) 0.96 (±0.31) 3.10 (±0.84) 

Phosphate concentration (mgP/L) 0.05 (±0.01) 0.11 (±0.02) 0.12 (±0.03) 0.27 (±0.09) 

Porewater bacteria concentration (per mL) 4.8 × 10
6
 (±6.3 × 10

5
) 7.4 × 10

7
 (±8.4 × 10

6
) 7.2 × 10

7
 (±4.2 × 10

6
) 1.5 × 10

8
 (±1.4 × 10

7
) 

Porewater virus concentration (per mL) 1.5 × 10
7
 (±5.8 × 10

6
) 2.3 × 10

8
 (±3.1 × 10

7
) 1.8 × 10

8
 (±1.5 × 10

7
) 4.2 × 10

8
 (±3.1 × 10

7
) 

Turbidity of water column (NTU) 7 16 16 10 

Dissolved Oxygen in water column (%) 93 140 134 89 

 

All data was measured in sediment interstitial porewater with the exception of turbidity and dissolved oxygen which were measured in 

the overlying water column.  ± indicates Standard error of the mean (n=3 for nutrient measures, n=5 for microbial abundances). 

N=nitrogen, P=phosphate, PSU=practical salinity units, NTU=Nephelometric Turbidity Units. 
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