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SUMMARY 

Climate change may impact both water resources and terrestrial ecosystem structures. For 

a better understanding of the hydrological and ecological responses to future climate 

change, it is important to know how recharge relates to climate conditions, how vegetation 

uses rain water of strong seasonal variation, and how much stress vegetation experienced 

under current climate conditions. This dissertation is to examine these issues from isotopic 

perspective based on a study area with a strong hydroclimatic gradient induced by 

topographic relief.   

Upland catchments usually are not only composed of bedrock aquifers, thick fracture-rock 

vadose zone and thin soil, but also vegetation cover.  Experiments were performed on two 

contrasting hillslopes in a native vegetated catchment – Mount Wilson, to study plant 

responses to environmental conditions (primarily water stress).  Significant seasonal 

variations in leaf δ13C are observed for both studied C3 tree genus up to 1.7‰ for 

Eucalyptus Leucoxylon and up to 2.7‰ for Acacia Pycnantha. Temporally, the linear 

correlation coefficients between leaf δ13C and aridity index (PET/P) can be as high as 0.45. 

Spatially the correlation coefficient is 0.34 for Eucalyptus species. This result suggests that 

PET/P may be applied to quantify the relationship between leaf δ13C and plant water 

stress. 

Stable isotope water composition of precipitation is of importance as input characterization 

to trace recharge sources of groundwater. In vegetated catchments, the input water 

isotopic composition is altered from precipitation. Based on one year throughfall monitoring 

for both 18O and d-excess at two vegetated surfaces in Kuitpo Forest, South Australia, the 

results indicate that isotopic alteration can be significant in densely vegetated catchments 

and is important for hydrograph separation studies, but can be negligible for tracing 

groundwater recharge sources.  
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Water isotopic composition is also used to examine how vegetation uses rain water in a 

typical Mediterranean climate. One-year monitoring of δ18O and δ2H in twig water is 

applied to understand the root zone moisture replenishment. The response of δ18O and 

δ2H of twig water to the rain events indicates that landscape water storage capacity of 

winter rain is important for plant growth and survival during dry summer. The results of the 

δ18O and δ2H of groundwater had a mean value -5.1‰ and -27.5‰ respectively and that 

of throughfall in the wet season had a mean value -5.1(±1.7)‰ and -23.4(± 13.3)‰ 

correspondingly. They indicate that groundwater recharge is dominated by events in the 

wet season. 

Extended from this small catchment, water isotopic composition is used to examine 

groundwater recharge seasonality over the whole Mount Lofty Ranges. Based on this 

understanding, an improved storage-discharge relationship-based method (SQR) is 

proposed to estimate groundwater recharge for mountainous catchments. Net catchment 

recharge estimates varies between 1.3 mm/year and 13.5 mm/year. Especially, recharge 

estimates from catchment Onkaparinga River at Hahndorf using SQR method is (7.0 

mm/year) close with that from the independent chloride mass balance estimation (3 

mm/year). Good correlation between annual direct water-table recharge and aridity index 

suggests that this method can be used to examine dynamic responses of groundwater 

recharge to the climate conditions in mountainous regions. 
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