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Abstract 

Background and purpose 

Type 2 diabetes (T2D), a metabolic disease strongly associated with obesity, represents a 

tremendous burden on healthcare systems worldwide. The curative effect of bariatric surgery 

indicates T2D pathogenesis has a significant gastrointestinal component. Enteroendocrine cells 

(EECs) are specialized endocrine cells dispersed throughout the gut epithelium and collectively 

constitute the largest endocrine organ in the body. Although gut hormones are implicated in 

maintaining glucose homeostasis and energy balance, our understanding of the mechanisms 

governing their secretion in humans remains largely incomplete.  

This thesis aimed to: (a) develop a platform to study the secretory response of human 

enteroendocrine L cells, a subtype of EEC that secrete glucagon-like peptide 1 (GLP-1) and peptide 

YY (PYY), (b) determine whether various reported pathways that govern GLP-1 and PYY secretion in 

rodents exist in humans, and (c) establish the classical hyperglycaemic pancreatic hormone, 

glucagon, as a gut hormone, following recent findings of extrapancreatic glucagon in 

pancreatectomized patients.  

Experimental approach 

Attempts to use a Percoll density gradient to enrich human L cells from primary mixed intestinal 

epithelial cell cultures were met with limited success. An ex vivo secretion platform using gut 

mucosae obtained from surgical specimens was therefore developed to study the secretory 

response of human L cells upon stimulation by a variety of compounds acting through a number of 

different pathways.    

Key results 

1) High glucose concentrations resembling postprandial luminal concentrations potently 

stimulated GLP-1 release in human duodenum and ileum, but not colon. This response is 

primarily driven by the electrogenic activity of the sodium glucose co-transporter 1, the 

facilitated transport of glucose by GLUT2, KATP channel closure and mitochondrial 

metabolism.  

2) Acute exposure to the first-line anti-diabetes drug, metformin, potently triggers L cell 

secretion from human colon and ileum tissue. Baseline GLP-1 and PYY, and metformin-

induced release, were unchanged across BMI and in subjects with type 2 diabetes. GLP-1 and 

PYY co-release was tightly correlated. AMPK inhibition blocked the L cell response to 
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metformin, as did antagonists of membrane transporters associated with metformin 

internalisation. 

3) Acute exposure to the endogenous melanocortin 4 receptor agonist, α-Melanocyte 

stimulating hormone (α-MSH), and its more potent analogue, [Nle4,D-Phe7]-α-MSH (NDP-α-

MSH), significantly triggered PYY and GLP-1 secretion from ileal and colonic mucosae. The 

stimulatory effect of NDP-α-MSH was attenuated by the endogenous melanocortin 4 

receptor antagonist, Agouti-related peptide (AgRP). 

4) The human gut epithelia release GLP-1 upon exposure to the myokine interleukin 6 (IL-6). 

This stimulatory response is also observed with IC7, a rationally-designed IL-6 receptor 

agonist with a lower inflammatory potency than IL-6.  

5) The classical endocytotic protein, dynamin, is implicated in controlling L cell exocytosis. 

6) The human gut epithelium is a source of fully-processed glucagon. The release of gut-derived 

glucagon is triggered by exposure to the amino acid arginine and levels of glucose 

resembling those seen postprandially in the gut lumen. The mechanism underlying glucose-

induced glucagon release from the gut is different to that governing glucose-induced GLP-1 

release.  

Conclusions 

Collectively, these results show that many pathways govern L cell secretion exist in humans, 

although some major differences were also observed to those observed in rodents. Additionally, the 

presence of gut-derived glucagon represents a new potential therapeutic target for treating T2D.  
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1 The role of the enteroendocrine system in diabetes 

pathogenesis 

1.1 Introduction 

Diabetes is a disease of disrupted glucose homeostasis. The World Health Organization (WHO) 

defines diabetes as “fasting blood glucose of 7.0 mM or greater; or on medications for raised blood 

glucose”. It is estimated the global prevalence of diabetes was more than 9% among adults aged 18 

years and over in 20141. In the most recent status report on non-communicable diseases compiled 

by the WHO, there was an estimated 1.5 million deaths caused directly by diabetes globally and the 

WHO projected diabetes will be the 7th leading cause of death in 2030. With approximately 1 million 

Australians being diagnosed with diabetes, the total annual cost for Australians with the disease is 

$6 billion and is expected to increase substantially if the disease prevalence continues to rise at its 

current rate2,3. Microvascular complications of diabetes such as retinopathy are the leading causes of 

blindness in the developed world, while diabetic neuropathy and nephropathy are the main causes 

for amputations and dialysis, respectively4. Furthermore, diabetic macrovascular complications often 

develop in the form of atherosclerosis, which significantly increases the risk of myocardial infarction 

and stroke5. While there is an array of aetiologies for diabetes, type 2 diabetes mellitus (T2D) is by 

far the most common type and accounts for up to 90-95% of diabetes diagnosis1.  

Blood glucose levels are regulated by the interplay between two pancreatic hormones, glucagon and 

insulin, which are produced by α and β cells in the endocrine pancreas, respectively (Figure 1.1). 

Glucagon is a catabolic, glucose-mobilizing hormone that promotes the release of glucose from the 

liver through glycogenolysis6 while insulin is the anabolic, glucose-disposing hormone that 

encourages glucose uptake into insulin-sensitive tissues in the periphery. During fasting, the 

glucagon-to-insulin ratio markedly increases to allow glucagon’s action to dominate over that of 

insulin7, thereby maintaining blood glucose levels within the optimal physiological range of 4 – 6 mM 

in humans8. Hypoglycaemia is defined as blood glucose levels below 3.9 mM9 and can cause a range 

of neurological symptoms such as headache, loss of consciousness and seizures. If left untreated, 

hypoglycaemia could result in severe brain damage10. Conversely, insulin action dominates in 

postprandial periods. It acts at insulin receptors on peripheral organs such as the liver, skeletal 

muscles and adipose tissue to encourage the uptake and storage of glucose into these organs, via 

glycogeneogenesis and lipogenesis, essentially clearing “excess” glucose from the circulation to 

maintain glucose homeostasis. Insulin further lowers blood glucose by inhibiting hepatic glucose 
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output, acting directly on the liver and indirectly on neighbouring α cells by suppressing glucagon 

secretion. Postprandial glucose disposal is crucial in maintaining glucose homeostasis as excess 

glucose in circulation (hyperglycaemia) causes oxidative stress in nerves, the kidneys and the 

endothelial cells of the vasculature, which are implicated in the development of diabetic 

microvascular complications. 

 

Figure 1.1.1 Glucose homeostasis is maintained by the interplay between the hypoglycaemic actions 
of insulin and hyperglycaemic actions of glucagon. Reprinted from reference 11.  

1.2 Type 2 diabetes and its aetiology 

T2D is characterized by insulin resistance coupled with varying degrees of insulin insufficiency, which 

combine to attenuate insulin action. As such, glucose cannot be effectively cleared from the 

circulation by insulin-sensitive tissues such as the liver, skeletal muscles and adipose tissue, 

rendering the individual hyperglycaemic (Figure 1.2.1). In the face of hyperglycaemia, β cells of the 

endocrine pancreas increase insulin output as a compensatory mechanism. This is typically 

characterized by an initial hyperinsulinaemic phase, which prevents the individual from becoming 

chronically hyperglycaemic12. However, worsening insulin resistance increases the demands on β 

cells to increase insulin output. It is not uncommon for individuals with marked insulin resistance to 

not develop diabetes, provided their endocrine pancreas can compensate for the increased insulin 

demand13.  



 

3 
 

 

Figure 1.2.1 The risk factors and aetiology of type 2 diabetes. T2D develops as a result of reduced 
insulin action in insulin-sensitive tissues coupled with impaired insulin secretion by pancreatic β cells. 
Reprinted from reference 14. 

Diabetes typically progresses from a “pre-diabetes” state, at which stage an individual either has 

impaired fasting glucose and/or impaired glucose tolerance. Impaired fasting glucose is defined as 

blood glucose levels between 6.1 – 7 mM after an overnight fast while impaired glucose tolerance is 

defined as blood glucose levels between 7.8 - 11 mM 2 hours after a 75 g oral glucose load15. Since β 

cells are prone to glucotoxicity16-21, hyperglycaemia secondary to attenuated insulin action further 

exacerbates deterioration in β cell health. This creates a cycle that can ultimately result in loss of β 

cell mass and function, rendering the endocrine pancreas no longer being able to produce sufficient 

insulin to clear glucose and the subsequent diagnosis of diabetes. 

T2D is a complex, multifactorial, polygenic disease22. Genetic predisposition remains the most 

prominent risk factor with first-degree relatives of T2D patients having a 3.5 times higher risk of 

developing T2D than the general population23. T2D is highly concordant between identical twins24-27. 

Aging28,29, polycystic ovarian syndrome30,31 and the use of atypical antipsychotics32,33 are also risk 

factors for developing T2D. However, the most important modifiable risk factor for developing T2D is 

obesity, which is profoundly implicated in the development of insulin resistance34,35 and impaired β 

cell function36. Insulin resistance is positively correlated with visceral fat deposits37,38 and central 

obesity39,40. Hyperlipidaemia secondary to obesity is a prominent cause for β cell dysfunction due to 
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increased lipid deposition within the pancreas41,42. The importance of excess weight in T2D 

development is evident by the fact that one of the most reliable ways to induce T2D phenotypes in 

laboratory animals is to put the animals on an obesogenic diet, or to select animals with an 

obesogenic genetic background43. Therefore, it is of no surprise that weight loss, especially the 

reduction of visceral fat deposit is highly relevant in the prevention and treatment of T2D44.  

For many years, diabetes research and clinical management has adopted a mostly insulino-centric 

view45. Enhancing insulin action, either through exogenous insulin supplementation, increasing 

insulin secretion (sulfonylureas, GLP-1 receptor (GLP-1R) agonists or dipeptidyl peptidase 4 (DPP4) 

inhibitors) or increasing peripheral insulin sensitivity (biguanides and thiazolidinediones), forms the 

basis of most clinically available anti-diabetic therapeutics46. Despite more than half a century of 

research, the optimal control of blood glucose in diabetic patients has not been achieved with these 

predominantly insulino-centric approaches. More recent approaches to combat hyperglycaemia 

involve reducing intestinal glucose absorption, promoting urinal glucose excretion and reducing 

glucagon secretion47.  

1.2.1 Potential gastrointestinal components to diabetes pathogenesis: lessons 

from bariatric surgeries 

As a significant portion of T2D patients have already experienced considerable impairment in β cell 

function by the time of diagnosis12, T2D has been overwhelmingly treated as a disease of the 

endocrine pancreas of impaired insulin function. Whilst insulino-centric approaches are effective in 

reducing glycaemia and therefore significantly reduce the risks of the development of micro-and 

macrovascular complications, none have curative effects. Despite relentless research, T2D remained 

a disease with no definite cure until the emergence of bariatric surgeries. Multiple studies in the 

1970s showed that small bowel bypass operation, then a treatment for obesity, came with the 

unanticipated outcome of marked improvement in glycaemic control48,49. Laparoscopic adjustable 

gastric banding (LAGB), Vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are 

the three most commonly performed bariatric procedures (Figure 1.2.2). However, the efficacy of 

bariatric produces involving anatomical manipulations of the gastrointestinal (GI) tract, namely VSG 

and RYGB, in improving glycaemic profiles, is far superior to that of LAGB, a purely restrictive 

procedure50. In many cases, complete remission of T2D is achieved, enabling the removal of anti-

diabetic medications to maintain adequate glycaemic control51. Although originally thought to be a 

weight-dependent effect, it was later established that weight loss through caloric restriction and 

exercise could not achieve T2D remission in such a dramatic way and T2D is resolved within days 

after bariatric surgeries in many cases, long before any significant weight loss was achieved52. 
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Importantly, long-term follow up studies report that many post-bariatric patients remain in diabetes 

remission for decades53-56.  

 

Figure 1.2.2 Schematic representation of the GI anatomy after different bariatric procedures. (A) 
Laparoscopic adjustable gastric banding (LAGB), is a purely restrictive procedure. An adjustable 
silicone band is place around the top part of the stomach to create a small gastric pouch. Food intake 
in patients is reduced as a result of reduce capacity of the gastric pouch to accommodate ingested 
food. The nutrient flow after LAGB is not altered. (B) Vertical sleeve gastrectomy (VSG), 70-80% of the 
stomach is excised and the remainder is stapled to form the gastric sleeve. Ingested nutrient 
bypasses the excised gastric fundus but flows normally distal to the pylorus. (C) Roux-en-Y gastric 
bypass (RYGB), a large part of the stomach is excised and stapled, forming a small pouch is at the top 
part of the stomach, which is anastomosed to jejunum. After RYGB, ingested nutrients flow from the 
gastric pouch directly into the jejunum, bypassing the excised stomach and the entire length of the 
duodenum. (D) EndoBarrier, a gastrointestinal liner that is endoscopically placed in the duodenum to 
devoid nutrient exposure to the duodenum. Reprinted from reference 50. 

The fact that many T2D cases could be “cured” by anatomical rearrangements of the GI tract 

suggests the disease itself may have a significant, yet underappreciated, gastrointestinal component 

to its underlying pathogenesis57-59. This view is further supported by the impressive glucose-lowering 

efficacy of the less invasive EndoBarrier®, which is essentially an endoscopically placed liner to 

prevent contact between ingested nutrients and the lumen of the proximal small intestine60-62. In 

addition, experimental bariatric procedures such as ileal transposition and duodenal-jejunal bypass 
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(DJB) surgeries are highly efficacious in improving glycaemia in diabetic animal models63-65. 

Intriguingly, DJB improves glucose tolerance in insulin-deficient animals, suggesting glucose 

homeostasis could be improved via an insulin-independent pathway63,66.  Therefore the GI tract is 

highly important for T2D treatment67 and if such, the gut could also be implicated in the 

pathogenesis of the disease68-70.  

With the global diabetes drug market estimated to reach USD $116 billion by 202371, it is not 

surprising that there is an ongoing race within the pharmaceutical industry to develop efficacious 

“bariatric mimetic” pharmacotherapies72-74. However, the progress is significantly hindered by the 

lack of thorough understanding of the mechanisms underlying the anti-diabetic actions of bariatric 

surgeries. Although many hypotheses have been proposed50,75-86, the exact mechanism(s) of the anti-

diabetic action of bariatric surgery is still a subject of ongoing debate. One of the most profound 

changes that occurs after gastric bypass surgery is an individual’s postprandial gut hormone profile. 

Bariatric surgeries such as RYGB and VSG typically result in a postprandial surge of gut hormones 

such as the insulinotropic GLP-1 and the anorectic PYY. The levels of these hormones are typically a 

few fold higher than in un-operated individuals87, likely due to the increased exposure of the distal 

gut to nutrients and the higher number of GLP-1 and PYY-positive cells post-surgery88,89.  Whether 

the postprandial GLP-1 and PYY surges are coincidental or an essential component of the underlying 

mechanism of RYGB remains a controversial topic77,90-92. Nonetheless, the endocrine system of the GI 

tract is still a very attractive target for developing anti-diabetic treatments. I will provide an overview 

of the enteroendocrine system in the following section and discuss how it is implicated in T2D 

pathogenesis. 

1.3 The enteroendocrine system 

Although commonly underappreciated, the 1% of specialized endocrine cells sparsely scattered 

throughout the gut epithelium constitute the largest endocrine organ in the body by mass93. 

Collectively referred to as the enteroendocrine system, these endocrine cells “sample” luminal 

contents on the apical/brush border membrane and release more than 20 different hormones on 

their basolateral sides in response to different stimulants. Moreover, mechanical stimulations, 

neural inputs from the autonomic and enteric nervous systems94, and pro- and anti-inflammatory 

signals from immune cells95,96 are also known stimulants of gut hormone secretion from 

enteroendocrine cells (EECs) (Figure 1.3.1). These hormones are implicated in a wide range of 

physiological functions including GI motility, appetite control and glucose homeostasis97.  
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Figure 1.3.1 (A) Luminal nutrient exposure stimulates enteroendocrine cells (EECs) and they release 
different hormones on the basolateral side in response to the stimulation. These hormones are 
involved in regulating a wide range of physiological functions. (B) Signalling pathways to and from 
EECs: (i) luminal stimuli such as nutrients directly trigger the release of many hormones from EECs. (ii) 
The hormones released by EECs enter the circulation through the portal vein. EECs receive inputs 
from neighbouring (iii) enterocytes and (iv) other EECs via paracrine signalling. (v) Hormonal cues 
from EECs are relayed to the CNS via neuronal afferents of the vagus nerve. (vi) Nutrients can also 
regulate EEC secretion indirectly by acting on the enteric nervous system (ENS) as there are 
considerable bi-directional communications between EECs and the ENS. Reprinted from reference 98. 

Unlike other endocrine cells elsewhere in the body that are found in clusters, EECs are dispersed 

throughout the mucosal epithelium of the GI tract99, as a result of Notch-mediated differentiation of 

pluripotent stem cells of the intestinal epithelia100,101. While all the epithelial cells (enterocytes, 

Goblet cells, Paneth cells and EECs) of the intestinal mucosa originate from this pool of pluripotent 

stem cells, once a stem cell is committed to differentiate into a secretory cell, it inhibits 

neighbouring cells from adopting the same fate via Notch-signalling. The cell further differentiates 

into an endocrine cell under the control of the transcription factors Neurogenin3 and NeuroD (Figure 

1.3.2). Owing to this lateral inhibition, it is rare to locate two EECs adjacent to each other along the 

intestine.  
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Figure 1.3.2 The differentiation of enteroendocrine cells from pluripotent stem cells (marked by Lgr5) 
in the crypts of the intestinal epithelia. Expression of Math1 or Hes1 differentiates the secretory 
lineage from the absorptive lineage (enterocytes). Notch signalling in Math1-expressing cells 
prevents neighbouring cells from developing into the same cell type. Endocrine progenitors express 
Neurogenin3 (Ngn3) and subsequently NeuroD, allowing them to differentiate into EECs. Reprinted 
from reference 100. 

The EEC population constitutes different cell types, each of which has its own specialized functions, 

usually characterized by its secretory products. It is now accepted that there are vast overlaps in the 

secretory profiles of EECs102 and the “one cell type, one hormone” dogma is widely rejected. Studies 

using transgenic mice expressing fluorescent reporter proteins driven by promoters of different gut 

hormones revealed that multiple hormones can be simultaneously expressed by an individual 

EEC103,104. Immunohistochemical analysis of these fluorescent-reporter protein-tagged EECs reveals 

that a substantial population of GLP-1 secreting L cells in the upper small intestine also express CCK 

or GIP104 and vice versa103. The fact that ablating diphtheria toxin receptor-expressing GLP-1-

secreting L cells simultaneously reduced CCK- and GIP-expressing cells further validates these 

findings103. High-resolution microscopy shows that these different hormones are packaged into 

separate vesicles within the EEC105-107, which could enable potential differential exocytosis 

depending on the stimulus108. Expression of EEC hormones are also regionally distinct, as many gut 

hormones are confined to specific regions of the gut, while a subset, such as serotonin and 

somatostatin, are present throughout the GI tract109,110(Table 1.3.1). Emerging evidence suggests 

that it is perhaps more appropriate to characterize EECs based on their anatomical location along 

the GI tract rather than their secretory profiles. Microarray analysis of fluorescent protein-tagged 

EECs using fluorescent-assisted cell sorting (FACS) revealed GLP-1-L cells in the small intestine are 

more similar to GIP-secreting K cells in the same region than are to GLP-1 secreting L cells in the 

colon104. 102,103 In the following sections, I will discuss the role of several of these gut hormones in the 
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context of energy balance and glucose homeostasis and importantly, how they are implicated in 

obesity and T2D pathogenesis. 

 

Table 1.3.1 The hormonal profiles of the different regions of the gut. 5-HT (serotonin), GIP (glucose-
dependent insulinotropic peptide), CCK (cholecystokinin), SST (somatostatin), GLP-1 and GLP-2 
(Glucagon-like peptide 1 & 2), PYY (peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5). 
Reprinted from 110. 

1.3.1 Serotonin (5-HT) 

Serotonin (or 5-Hydroxytryptamine, 5-HT) is produced by enterochromaffin (EC) cells, which 

constitute approximately 50 % of the total EEC population and are scattered throughout the length 

of the gut, from the stomach to the distal colon102,109. Although better-known for its central actions, 

more than 90 % of circulating 5-HT is synthesized by EC cells and stored in platelets111,112. Tryptophan 

hydroxylase 1 (TPH1) is the rate-limiting enzyme of 5-HT synthesis in EC cells and its expression in 

the gut mucosa is limited to EC cells. EC cells have the capacity to sense113,114 and secrete 5-HT in 

response to, a wide range of nutrients present in the gut lumen such as glucose and fructose115,116, 

the medium chain fatty acid, lauric acid117, various tastants and olfactants114. 5-HT secretion from EC 

cells is also regulated by neural and endocrine inputs such as adrenergic stimulation and GABA and 

somatostatin inhibition118.  

Although traditionally regarded as a regulator of gastric motility119 and more recently, a mediator in 

the pathogenesis of inflammatory intestinal disorders111,120, gut-derived 5-HT is now also recognised 

as an important player in energy balance and glucose homeostasis121-124 (Figure 1.3.3). In contrast to 

its action in the central nervous system, in which it favours negative energy balance and promotes 

weight loss125, peripheral 5-HT is a potent driver of obesity and perturbed glucose homeostasis. This 

notion stemmed from observations that diet-induced obese (DIO) rodents had higher circulating and 
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intestinal 5-HT when compared with lean counterparts126. Importantly, TPH1 expression is 

significantly elevated in obese humans127,128 and circulating 5-HT levels are significantly elevated in 

T2D patients129-131. The causative role of elevated gut-derived 5-HT in driving these phenotypes was 

later established by studies showing inhibition of intestinal TPH1 in mice, either through tissue-

specific ablation or pharmacological inhibition, protected mice from glucose intolerance and weight 

gain secondary to a high fat diet132-134. Multiple metabolically important organs are potential targets 

for the obesogenic and diabetogenic effects of peripheral 5-HT via an array of 5-HT receptors. Gut-

derived 5-HT markedly increases hepatic glucose output, a main driver of hyperglycaemia, by 

increasing hepatic gluconeogenesis and glycogenolysis135 and inhibiting glucose uptake and glycogen 

synthesis in the liver132. In addition, gut-derived 5-HT promotes lipolysis in adipocytes, thereby 

liberating free fatty acids (FFAs) and glycerol132, which are important substrates for hepatic 

gluconeogenesis and thus further enhancing hepatic glucose output. Moreover, gut-derived 

serotonin promotes weight gain through attenuating thermogenesis in brown adipose tissue and 

inhibiting browning of white adipose tissue133,134, thus reducing energy expenditure.  
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Figure 1.3.3 The metabolic effects of 5-HT derived from enterochromaffin (EC) cells from the gut 
epithelium. 5-HT promotes lipolysis in white adipocytes and inhibits thermogenesis in brown 
adipocytes. It also stimulates hepatic glucose output and may promote glycolysis in skeletal muscles. 
5-HT receptors (Htrs). Reprinted from reference 124. 

5-HT also promotes β-cell mass expansion, enhances glucose-stimulated insulin secretion136,137 and 

inhibits glucagon secretion138. Such effects appear to be contrary to the aforementioned 

diabetogenic effects of 5-HT. However, it is worth noting that it is unlikely for gut-derived 5-HT to be 

mediating these effects as β-cells produce and secrete serotonin endogenously, which signals in an 

autocrine139 and paracrine fashion138 within pancreatic islets. Indeed, eliminating gut-derived 5-HT 

did not significantly affect glucose-induced insulin secretion in vivo132, supporting the notion that 

islet function is not directly regulated by gut-derived 5-HT.  

An obesogenic Western diet significantly increases Tph1 mRNA and EC cell number in rodent small 

intestine128,140 and recent work from our laboratory and collaborators clearly demonstrated that 

obese humans have increased EC density in the duodenum127. Thus, there is clear evidence showing 

EC cell-derived 5-HT negatively impacts energy balance and glucose homeostasis with the underlying 

causes of elevated 5-HT levels remaining unclear121.  

1.3.2 Somatostatin (SST) 

Somatostatin is an inhibitory hormone in a number of endocrine systems throughout the body such 

as the endocrine pancreas and the hypothalamus. SST is also synthesized and secreted by 

enteroendocrine D cells, which are most abundant in the gastric epithelium and present throughout 

the entire length of the intestinal epithelium141. Somatostatin is the gene product of SST, which 

encodes for a 120-amino acid peptide precursor, preprosomatostatin. Post-translational cleavage of 

the precursor gives rise to two bioactive forms that are found in the circulation, the 14-amino acid 

SST-14 and the 28-amino acid SST-28, which is a 14-amino acid extension of the N-terminus of SST-

14. It is now widely accepted that the SST-28 is the predominant form produced by enteroendocrine 

D cells while SST-14 is mainly produced within the CNS. The secretion of somatostatin from the gut 

can be triggered by various stimuli such as lipids or decreased luminal pH142-144. In addition, intestinal 

SST secretion is also under the control of the enteric145,146 and parasympathetic130 nervous systems. 

Gut-derived SST inhibits gastric acid production by suppressing secretions from gastric chief cells and 

parietal cells. Moreover, SST inhibits nutrient absorption147 and negatively regulates the secretion of 

virtually all other gut hormones148. The inhibitory actions of intestinal somatostatin is also implicated 

in anti-inflammatory responses within the intestinal epithelia by inhibiting pro-inflammatory 

cytokine secretion by local immune cells149,150. These actions are mediated by a family of five 

different somatostatin receptors (SSTRs), all of which are GPCRs that are negatively coupled to 
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adenylyl cyclase151. The role of gut-derived somatostatin in metabolism proved to be difficult to 

elucidate given that SST is expressed by various endocrine cell types throughout the body. Although 

administration of SST and its analogues are beneficial in relieving hyperglycaemia during 

insulinopaenia by attenuating glucagon action, it is unlikely that gut-derived somatostatin is directly 

implicated in the regulation of pancreatic islet hormone secretion. Rather, this is regulated by SST-

derived from pancreatic δ cells152. A gut-specific somatostatin knockout animal model has not yet 

been reported and until such an animal model is phenotypically characterized, the role of intestinal 

somatostatin in metabolism will remain unclear.  

1.3.3 Cholecystokinin (CCK) 

Cholecystokinin (CCK) is a neuropeptide produced by enteroendocrine I cells predominantly found in 

the proximal duodenum. CCK-8, an octapeptide cleaved from the C-terminus of the 95 amino acid 

prohormone, is the shortest bioactive CCK peptide153. As the bioactivity of CCK resides in the C-

terminus of the prohormone, all other bioactive CCK peptides such as CCK-22, CCK-33 and CCK-58, 

are N-terminus extensions of CCK-8154,155. CCK is also produced by enteric neurons and is highly 

expressed in the CNS. Two types of CCK receptors have been identified. CCK1R is predominantly 

found in the periphery and CCK2R is localized to the CNS. CCK1R is highly selective for sulphated CCK-

peptides while CCK2R binds equally to both sulphated and unsulphated forms. I cell CCK secretion is 

triggered by nutrient ingestion. Fats are the most potent of the macronutrients to trigger CCK 

release while carbohydrates are the weakest. The role of CCK in regulating digestive function has 

long been appreciated as it is a potent stimulator of gallbladder contraction and exocrine pancreatic 

secretion, which aid digestion and absorption by the release of bile and pancreatic enzymes into the 

intestinal lumen, respectively. CCK also inhibits gastric emptying and colonic motility156,157.  

The importance of CCK in maintaining energy balance was first recognized when its potent satiating 

action was described158-160. Postprandial release of CCK acts on vagal afferent CCK1R161,162, which 

signals to POMC neurons in the nucleus tractus soliatrius (NTS) in the brainstem to induce acute 

satiation163,164. Subsequent studies revealed that while CCK reduces meal size, this is typically 

compensated by increasing meal frequency and thus, has limited impact on cumulative food intake 

in an acute setting165,166. Nonetheless, the importance of CCK-induced satiation in energy balance 

and glucose homeostasis became evident when the phenotype of OLETF rats, which lack functional 

CCK1R167, was described168. These rats display profound hyperphagia from birth and subsequently 

become obese and diabetic later in life, which closely resembles the development of T2D in humans 

secondary to obesity169,170. Interestingly, pair-feeding these rats to control rats with functional CCK1R 

completely prevented the development of the obese and diabetic phenotype171,172, which indicates 

increased food intake is the primary driver of the phenotype. However, it is important to note that 
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there are major species differences in the actions of CCK. Although ablation of Cck1r in mice resulted 

in increased meal size, it had no significant impact on cumulative food intake in these mice173 and 

Cck1r-deficient mice have normal bodyweight and glycaemia173,174, contrasting the spontaneously 

obese and diabetic phenotype of OLEFT rats. It was later shown that neuropeptide Y (NPY) neurons 

in the mouse dorsomedial hypothalamus do not normally express CCK1R174, a pathway that partly 

mediates CCK-induced satiation in rats171,175. It remains to be determined whether this pathway 

exists in humans. Nonetheless, recent studies showed that twice-daily injection of a CCK-8 analogue 

caused significant weight loss and improved glycaemia in diet-induced obese (DIO) and ob/ob mice 

after one month176,177, suggesting exogenous CCK could play a role in maintaining energy 

homeostasis in the face of metabolic challenges such as a high fat diet.  

There is also evidence supporting a role of CCK in maintaining glucose homeostasis independent of 

its satiating effects. Although data regarding CCK’s effect on insulin secretion is somewhat 

conflicting178-182, it is clear that CCK significantly reduces postprandial glucose excursions in humans 

through its inhibitory effect on gastric emptying183, a major determinant of postprandial 

glycaemia184. In addition, CCK administration significantly increases the secretion of the incretin, 

GLP-1185, which has potent insulinotropic and glucagonostatic actions69(see section 1.3.5.1.1). This 

effect likely occurs through the direct stimulation of enteroendocrine L cells by bile acids186 released 

from CCK-induced gallbladder contraction185. Moreover, CCK could be implicated in regulating 

hepatic glucose output as intraduodenal administration of CCK-8 in rats significantly reduced hepatic 

glucose production in a vagally-mediated manner172.    

While there is no doubt CCK is an important regulator of energy and glucose homeostasis, it remains 

difficult to determine the contribution by I cell-derived CCK as the neuropeptide is also released by a 

subset of enteric neurons187 that could potentially act on vagal afferent CCK1R to mediate many of 

the physiological actions of CCK discussed above. In addition, CCK is expressed in other peripheral 

tissue such as pancreatic islets188,189, cardiomyocytes190 and the anterior pituitary191, which could 

confound findings from loss-of-function animal models such as Cck1r-deficient OLETF rats and Cck 

knockout mice192. Thus, until a model of gut-specific CCK ablation is developed, the physiological 

effects ascribed to CCK derived from I cells will have to be interpreted with great caution.  

1.3.4 Glucose-dependent Insulinotropic Peptide (GIP) 

Glucose-dependent Inuslinotropic Peptide (GIP) is a 42-amino acid peptide hormone produced by a 

subset of enteroendocrine cells called K cells that are located in the proximal intestine, 

predominantly in the duodenum and jejunum193,194. GIP-secreting cells were recently shown to 

produce other hormones such as CCK and GLP-1103. GIP secretion is stimulated upon nutrient 
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ingestion with glucose195, amino acids196 and lipids197 all being potent stimulants. GIP exerts its 

actions by binding to the GIP receptor (GIPR), a class II GPCR that is expressed by pancreatic islet 

cells198, adipocytes199,200 and CNS neurons201. GIPR activation results in increased cAMP production 

and increased intracellular calcium202. Secreted GIP is rapidly degraded by dipeptidyl peptidase IV 

(DPP4), a serine protease that is widely expressed throughout the body, especially in endothelial 

cells lining blood vessels68. Originally termed Gastric-inhibitory Peptide due its inhibitory effects on 

gastric secretion at pharmacological doses203, GIP was subsequently shown to have marked 

insulinotropic potency and has since been renamed to reflect this property. Together with GLP-1, the 

two hormones account for more than 70 % of postprandial insulin secretion204. In addition to its 

insulinotropic effect, GIP increases insulin biosynthesis68 and is trophic to pancreatic β cells by 

promoting proliferation while also inhibiting apoptosis. It is therefore not surprising that mice 

deficient in Gipr display impaired oral glucose intolerance205,206. The insulinotropic effects of GIP are 

dramatically attenuated in T2D patients207,208, which is believed to be a major contributing factor to 

impaired postprandial insulin secretion in these patients. While the mechanism underlying the 

diminished insulin response to GIP has not been fully elucidated, β cell GIPR expression is 

significantly reduced in T2D human pancreatic islets when compared with non-diabetic donors209, in 

line with findings in rodent models of T2D210-212. Since the binding of GIP to GIPR results in receptor 

internalization as part of the signal transduction cascade213,214, it is possible that chronic 

hyperglycaemia hinders effective receptor recycling. Receptor desensitization after prolonged GIPR 

signalling has been reported215, which is supported by findings demonstrating comparable glycaemic 

and insulin levels in wildtype controls and transgenic mice overexpressing Gip216. This indicates β 

cells are refractory to chronically elevated GIP levels. Notably, the insulinotropic potency of GIP is 

markedly reduced in non-diabetic first-degree relatives of T2D patients, which is likely to be one of 

the many genetic factors that predisposes these individuals to develop T2D later in life217. Moreover, 

GIP is glucagonotropic218-221 and thus could worsen hyperglycaemia in the face of attenuated insulin 

action.  

Several studies have reported elevated GIP levels in obese humans222,223. The lack of a reliable GIPR 

antagonist suitable for human studies224,225 means elucidation of the physiological roles of GIP 

predominantly relies on transgenic mouse models of Gip and Gipr knockouts and of Gip 

overexpression. Potential obesogenic effects of GIP were first suggested when the phenotype of Gipr 

knockout mice was first reported. Not only were these animals protected from diet-induced obesity, 

Gipr-deficiency also protected leptin-deficient ob/ob mice from age-related weight gain and 

worsening glucose tolerance205. The obesogenic role of GIP has been largely attributed to its 

lipogenic effects. GIP promotes lipid uptake and inhibits lipolysis in adipocytes226, closely resembling 
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the anabolic actions of insulin. Elevated GIP levels and duodenal K cell hyperplasia227 occur in DIO 

mice, likely as an adaptive response to prevent excess fat from depositing in other metabolically 

active organs such as the liver and skeletal muscles. However, GIP induces osteopontin expression in 

adipocytes228. This adipokine is associated with obesity-related systemic low grade 

inflammation229,230, which has a well-established role in the development of insulin resistance231-234. 

Such adaptive responses could have indirect deleterious effects on glucose homeostasis. This notion 

is supported by recent findings that showed adipocyte-specific Gipr ablation protected mice from 

DIO-induced insulin resistance and hepatic steatosis, potentially by reducing circulating levels of pro-

inflammatory cytokines235. Gipr deficiency has also been demonstrated to protect mice from 

ovariectomy-induced weight gain236. The obesogenic effects of GIP are only apparent in the face of 

nutrient excess, as chow-fed Gipr and Gip knockout animals are not leaner than their wildtype 

counterparts206. The role of GIP in energy balance is further complicated by paradoxical findings that 

showed transgenic mice overexpressing Gip were leaner than wildtype controls when fed a 

standard-chow or high-fat diet237 and that GIPR signalling can enhance GLP-1-induced weight loss238.  

 

Figure 1.3.4 The biological actions of GIP. GIP stimulates secretion from both pancreatic α and β cells. 
It exerts trophic effects on β cells and is also lipogenic. Reprinted from reference 70. 

1.3.5 Proglucagon-derived Peptides (PGDPs) 

The glucagon gene (GCG) encodes for the 180-amino acid preproglucagon peptide, which is 

differentially processed by the three known cell types that express GCG, pancreatic α cells, 
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enteroendocrine L cells and a subset of neurons in the NTS of the brainstem. Following translation 

from GCG mRNA, the signal peptide, which consists of the first twenty amino acids in the N-terminus 

is cleaved to give rise to a prohormone, proglucagon. In pancreatic α cells, the proglucagon peptide 

is predominantly processed by prohormone convertase (PC) 2, which gives rise to glucagon, 

glicentin-related pancreatic peptide and major proglucagon fragment. In the enteroendocrine L cells 

and NTS neurons, and to a lesser extent in α cells239, proglucagon is processed by PC1/3, which gives 

rise to four different proglucagon-derived peptides, glucagon-like peptide (GLP)-1, GLP-2, 

oxyntomodulin (OXM) and glicentin. The differential post-translational processing of the 

proglucagon peptide is depicted in Figure 1.3.5. 

 

Figure 1.3.5 Post-translational processing of the proglucagon peptide. In enteroendocrine L cells and 
in a specific population of NTS neurons, proglucagon is processed by PC1/3, giving rise to glicentin, 
oxyntomodulin, GLP-1 and GLP-2. In pancreatic α cells, proglucagon is processed predominantly by 
PC2 to produce glucagon, although low level of GLP-1 is also produced PC1/3 in α cells.  

1.3.5.1 Glucagon-like Peptide 1 (GLP-1) 

GLP-1 is a 30 amino acid peptide derived from the proglucagon peptide. Post-translational 

processing by PC1/3 produces two biologically active forms, GLP-17-36-amide (GLP-17-36NH2) and GLP-

17-37, with the former being the predominant form produced by enteroendocrine L cells in humans240 

and rodents241. Considering both forms of GLP-1 peptides have identical biological activity to GLP-11-

37
242, the term GLP-1 will be used to refer to all biologically active forms of GLP-1 peptides. Secreted 

GLP-1 binds to the GLP-1 receptor (GLP-1R), a class B Gs-coupled GPCR, which results in adenylyl 

cyclase activation and subsequent increase in intracellular cAMP and PKA activation69 (Figure 1.3.6). 
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GLP-1R is widely expressed throughout the body, including pancreatic islets, brain, heart, kidneys69. 

Many of the physiological actions of gut-derived GLP-1 are mediated by GLP-1R present on vagal 

afferents243,244. Endogenous GLP-1 has a short half-life of under two minutes as it undergoes rapid 

enzymatic degradation, primarily by DPP4, which also degrades GIP69. There is also evidence 

supporting the role of neutral endopeptidase 24.11 in GLP-1 degradation in vivo245,246.  

GLP-1 is secreted postprandially by enteroendocrine L cells upon nutrient exposure, typically within 

10-15 minutes after nutrient ingestion69. Since the majority of L cells in humans resides in the distal 

part of the small intestine and colon, the immediate postprandial GLP-1 surge was originally thought 

to be vagally-mediated 247. However, the fact that the postprandial GLP-1 response in vagotomized 

patients is exaggerated, rather than attenuated, refutes this notion236,237. Moreover, although L cells 

express muscarinic receptors248,249 and acetylcholine triggers GLP-1 secretion in an ex vivo porcine 

ileal perfusion preparation250, direct vagal stimulation did not trigger the secretion of GLP-1, or other 

hormones that are co-secreted by L cells250. Therefore, GLP-1 secretion is likely to be regulated by 

cholinergic neurons within the enteric nervous system, rather than the parasympathetic nervous 

system250. It is now established that a considerable, albeit smaller, population of GLP-1 secreting L 

cells resides in the duodenum in humans251 and can be activated upon glucose exposure252, which is 

likely to account for the rapid postprandial GLP-1 surge observed in vivo.  

One of the most well-recognized physiological functions of GLP-1 is its incretin effect253. 

Aforementioned, GLP-1 and GIP account for up to 70 % of insulin secreted upon ingestion of oral 

glucose254. The desirable glucose-dependent hypoglycaemic effects of GLP-1 have been widely 

exploited by the pharmaceutical industry as effective anti-diabetic agents. The two major classes of 

GLP-1 based therapies that are currently clinically available are the GLP-1R agonists and DPP4 

inhibitors. The biological actions of GLP-1 are depicted in Figure 1.3.6. The physiological functions of 

GLP-1 in the context of glucose and energy homeostasis will be discussed in detail in the following 

sections. 
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Figure 1.3.6 The biological actions of GLP-1. Reprinted from reference 255. 

1.3.5.1.1 GLP-1 and glucose homeostasis 

The curative effects of bariatric surgery on diabetic individuals have been attributed to significantly 

elevated circulating GLP-1 levels post-surgery79,256, which is evident by the marked improvement of 

glycaemic control independent of weight loss257-260. Although this view remains controversial261,262, it 

is widely accepted that GLP-1 is an important regulator of glucose homeostasis through its action on 

multiple targets.  

1.3.5.1.1.1 GLP-1 and β cells 

GLP-1 is an incretin that enhances glucose-stimulated insulin secretion (GSIS) from β cells253. Unlike 

sulfonylureas, which trigger insulin secretion from β cells independent of glucose concentration and 

thus, puts an individual at risk of hypoglycaemia, insulin secretion stimulated by postprandial 

increases in GLP-1 only occurs at glucose concentrations above 6 mM263, thereby markedly reducing 

the risk of hypoglycaemia upon the administration of exogenous GLP-1. GLP-1 promotes β cell 

exocytosis through GLP-1R, which is highly expressed on the surface of β cells264,265. As depicted in 

Figure 1.3.7, binding of GLP-1 to the Gαs-coupled GLP-1R leads to adenylyl cyclase activation and 

subsequently, increased intracellular cAMP and the downstream activation of PKA and Epac2. This 

increases intracellular calcium concentrations, either through opening of L-type calcium channels or 

by mobilizing intracellular calcium stores266, to trigger exocytosis of docked insulin-containing 

vesicles (termed the readily releasable pool). PKC is implicated in enhanced insulin secretion by GLP-

1263 as GLP-1R can also be Gq-coupled 267. Although it is generally accepted that GLP-1 retains its 

insulinotropic potency in T2D individuals268, especially considering the anti-diabetic efficacy of GLP-1-
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based therapy, its incretin effect can be temporarily impaired in healthy individuals with acutely 

disturbed glucose homeostasis269. Indeed, reduced incretin potency of GLP-1, or so-called “GLP-1 

resistance”, has been reported in T2D patients, albeit to a lesser extent to that of GIP270-274. Chronic 

hyperglycaemia275 and hyperlipidaemia276 downregulate GLP-1R expression and impairs the 

downstream signalling pathways governing GSIS in β cells, which could underlie the reduced 

insulinotropic effects of GLP-1 in T2D277,278. Importantly, the insulinotropic potency of GLP-1 can be 

restored by correcting hyperglycaemia in many T2D patients273, except in individuals that are 

genetically predisposed to reduced GLP-1-stimulated insulin response209,279,280.  

In addition to its acute insulinotropic action, GLP-1 is a trophic factor for β cells and a positive 

regulator of β cell mass281,282. Prolonged GLP-1 treatment prevents β cell apoptosis283-286, and 

promotes β cells neogenesis287-289 and self-replication288,290-292. These mitogenic effects of GLP-1 are 

likely mediated through transactivation of the epidermal growth factor receptor293, the inhibition of 

the transcription factor FoxO1294 and increased Pdx1 expression in β cells295,296 (Figure 1.3.7). The 

latter also contributes to the improved β cell function by GLP-1284,297-299 as PDX1 is an important 

transcription factor that regulates the expression of many key β cell genes central to β cell function, 

such as INS (insulin), GCK (glucokinase) and SLC2A2 (GLUT2)300, which are indispensable in insulin 

biosynthesis301 and glucose-sensing302,303.  

 

Figure 1.3.7 Mechanisms underlying the insulinotropic and trophic effects of GLP-1 on pancreatic β 
cells. GLP-1 binds to GLP-1R, which leads to activation of adenylyl cyclase, elevating cAMP level, 
thereby activating PKA and Epac2 to increase intracellular Ca2+ levels, subsequently resulting in the 
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release of insulin-containing vesicles from the readily releasable pool. PKA activation also leads 
increased insulin biosynthesis by increasing the expression of Pdx1. RYR: ryanodine calcium channel; 
CICR: calcium-induced calcium release. Reprinted from reference 304.  

Although enteroendocrine L cells secrete GLP-1 upon meal ingestion, the magnitude of its 

postprandial surge is much smaller than that of the other incretin, GIP68. Moreover, only 10 % of 

secreted GLP-1 actually reaches the systemic circulation305 to exert any endocrine effects on 

pancreatic β cells, as up to 70 % of intestinally-derived GLP-1 is degraded by local DPP4 before 

reaching the portal circulation306, where it is subjected to further degradation in the liver307. These 

observations have led to increased questioning of the role of gut-derived GLP-1 as a true incretin 

that augments β cell GSIS in an endocrine fashion308,309. Indeed, several recent studies using tissue-

specific Glp1r and Gcg knockdown and reactivating mice models demonstrated while β cell GLP-1Rs 

are crucial in maintaining glucose homeostasis310,311, it is pancreatic α cell-derived, not 

enteroendocrine L cell-derived GLP-1, that mediates its insulinotropic effects312. Nevertheless, given 

postprandial GLP-1 response is typically increased by up to 30-fold in post-RYGB and VSG patients313, 

it is generally accepted that intestinally-derived GLP-1 does indeed act as a true incretin hormone to 

improve β cell insulin response in these settings309,314. 

1.3.5.1.1.2 GLP-1 and α cells 

Glucagon is a potent hyperglycaemic hormone secreted by pancreatic α cells in response to 

hypoglycaemia315. Its diabetogenic effect is discussed in detail in section 1.3.5.5. GLP-1 has a potent 

glucagonostatic effect in vitro316,317, ex vivo318-320 and in vivo321-327. The glucagonostatic effect of GLP-

1 contributes equally to its glucose-lowering action as its insulinotropic effect323 and this inhibitory 

effect is well-preserved in T2D patients321-323,327,328. However, the mechanisms underlying its 

inhibitory effect on pancreatic α cells remain debated as it is unclear if α cells actually express 

functional GLP-1R. Several studies have provided immunohistochemical evidence that rodent α cells 

do express GLP-1R316,329, although results from these studies should be interpreted with great 

caution as the validity of most commercially available antibodies directed against GLP-1R has been 

questioned330,331.  To overcome the issue of antibody specificity, a transgenic mouse model that 

express a fluorescent protein under the Glp1r promoter has been described and the authors 

reported that only a very small population of α cells express GLP-1R332. The use of α cell-specific 

Glp1r knockout animal models will thus provide valuable insights as to whether the lowly expressed 

GLP-1R has any physiological relevance in α cell physiology, although such model has not been 

reported in the literature. To date, evidence to support GLP-1R expression in human α cells is 

lacking264,333. Thus, the inhibitory effect of GLP-1 on glucagon secretion is likely to be indirect, 

potentially via the paracrine effects of insulin and somatostatin152,315. Indeed, GLP-1R is highly 

expressed in pancreatic β cells and to a smaller extent, in δ cells332, which secrete insulin and 
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somatostatin, respectively, upon GLP-1 exposure334,335. However, the fact that the glucagonostatic 

effect of GLP-1 is preserved in C-peptide negative T1D patients325,336 indicates that insulin, or β cell 

secretory products, are not required for the glucagonostatic effect of GLP-1. On the other hand, 

rodent pancreas perfusion studies demonstrated that GLP-1 induced glucagon suppression is 

completely reverted in the presence of a somatostatin 2 receptor antagonist318,320, which implies 

somatostatin mediates the glucagonostatic effect of GLP-1, although results contradicting this notion 

have also been reported316. Regardless of the underlying mechanisms, it should be noted the 

glucagonostatic effect of GLP-1 accounts for much of its anti-diabetic efficacy323, a notion that is 

often under appreciated.  

1.3.5.1.1.3 GLP-1 and the liver 

While impaired intraperitoneal glucose intolerance induced by Glp1r knockdown in mice can be fully 

rescued by selective expression of Glp1r in β cells310,311, oral glucose tolerance is not restored by β 

cell-specific Glp1r re-expression311. This indicates that extra-pancreatic GLP-1R is involved. The liver 

is one of the most important sites of glucose homeostasis as it accounts for up to 50% of 

postprandial glucose disposal and up to 80 % of endogenous glucose output in the fasted state337. 

Portal glucose signalling is an integral part of postprandial glucose clearance338 and there is ample 

evidence to support the role of GLP-1 in mediating this effect. The hypoglycaemic effect of portal 

glucose delivery339 is completely abolished in Glp1r-/- mice340. Moreover, Glp1r knockdown 

significantly increased endogenous glucose production in insulinopaenic, glucagon receptor (GCGR)-

deficient mice341, further supporting the notion that GLP-1 exerts some of its glucose-lowering 

effects independent of the pancreatic islets by acting on the liver342. Intraportal delivery of GLP-1, 

either through the hepatic portal vein or the hepatic artery, at concentrations that resemble 

postprandial intra-portal GLP-1 levels, increased net hepatic glucose uptake in canines under 

hyperinsulinaemic-hyperglycaemic clamp conditions343. Direct infusion of GLP-1 during a pancreatic 

clamp, where the effects of GLP-1 on insulin and glucagon secretion were abolished by somatostatin 

infusion, significantly decreased endogenous glucose production in humans344. Importantly, the 

authors from this study cited a markedly higher insulin replacement dose as the reason why a similar 

study242 did not observe any inhibitory effect of GLP-1 effect on endogenous glucose output during a 

pancreatic clamp. In addition to its inhibitory effect on hepatic glucose production, GLP-1 and its 

analogues have hepatoprotective effects such as reducing hepatic steatosis345,346 and circulating liver 

enzyme levels347 in various DIO rodent models. Such protective effects are of high relevance as there 

are links between liver diseases and the development of hepatic insulin resistance, which is a strong 

risk factor of developing T2D348,349.  
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How GLP-1 exerts these hepatic effects remains a subject of ongoing investigation. In stark contrast 

to insulin and glucagon, whose receptors are highly expressed in hepatocytes and count the liver as 

their major target organ for their metabolic effects, there is no direct evidence showing the liver 

expresses GLP-1R. Immunohistochemical staining with a monoclonal antibody against GLP-1R333 and 

the use of mouse model expressing a fluorescent-tagged protein under the Glp1r promoter332 both 

failed to detect GLP-1R expression in hepatic tissue. Although it is generally accepted that the 

hepatic effects of GLP-1 are mediated by GLP-1R expressed by vagal afferents350, the precise 

mechanisms underlying these effects are still unclear. It has been suggested that GLP-1 exerts its 

effect on the liver by activating vagal afferents innervating the hepatic portal vein351. However, 

portal delivery of GLP-1, either through the hepatic artery or the hepatic portal vein, increased net 

hepatic glucose uptake to a similar extent343. In addition, while hepatic portal vein denervation 

impairs oral glucose tolerance, it did not affect the glycaemic effect of the GLP-1R agonist 

exenatide352.  

1.3.5.1.1.4 GLP-1 and skeletal muscles 

Skeletal muscles account for up to 30% of postprandial glucose disposal337. Immunoblot evidence 

supports the expression of GLP-1R in human skeletal muscles353. GLP-1 facilitates glucose uptake and 

glycogen synthesis in skeletal muscles in a GLP-1R-dependent manner in vitro353-355 while other 

studies reported that GLP-1 had no significant effects356. It is worth noting that the concentrations of 

GLP-1 used in these in vitro experiments were at high nanomolar range, several orders of magnitude 

higher than what is deemed physiologically relevant, even in post-gastric bypass patients. Moreover, 

Glp1r knockout mice do not display defects in glucose uptake in their skeletal muscles357,358, which 

casts considerable doubt over the physiological relevance of these in vitro findings. 

1.3.5.1.1.5 GLP-1 and gut motility 

Gut motility is a major determinant of postprandial glycaemia359-361 as it controls the rate of 

nutrients entering the small intestine from the stomach, which in turns governs the rate of nutrient 

exposure and absorption by the small intestine and thus, postprandial glucose excursion and gut 

hormone release. Gastric emptying takes place when peristaltic contractions of the stomach force 

the release of chyme through the pyloric sphincter into the duodenum for absorption362. Despite 

being under the tight control of the autonomic and enteric nervous systems, inter-individual gastric 

emptying rates are highly variable and the rate of nutrient entry into the duodenum ranges from 1-4 

kCal/min in healthy individuals363. This could account for the 35% variance in peak postprandial 

plasma glucose level observed in these healthy individuals364. GLP-1 inhibits gastric emptying365-367 in 

a vagus-dependent manner368, as evidenced by the lack of anti-motility effect of GLP-1 in 

vagotomised patients369. There is growing appreciation for the notion that a considerable portion of 
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glucose-lowering effect of GLP-1 is underscored by its inhibitory effect on gastric motility367,370,371, 

which is preserved in obese and T2D patients362. The glucose-lowering effect of exogenous GLP-1 is 

markedly reduced, although not completely abolished, when its decelerating effect on gastric 

emptying is antagonized by intravenous erythromycin372. Moreover, GLP-1R activation inhibits small 

intestinal motility373, which markedly slows the rate of glucose absorption and thus, reduces 

postprandial glucose excursions374.  

1.3.5.1.2 GLP-1 and energy balance 

In addition to its multifaceted glucose-lowering effect, GLP-1 plays a role in regulating energy 

balance. This role is likely to be redundant, as whole body375,376 and various tissue-specific311,377,378 

Glp1r knockout mice all have normal bodyweight. GLP-1R is widely expressed in brainstem and 

hypothalamic regions379 that are implicated in appetite control. Indeed, the anorectic effect of GLP-1 

in humans was noted not long after the discovery of its glucose-lowering effects380,381. 

Intracerebroventricular (ICV) injection of GLP-1R agonists into these specific brain regions markedly 

reduces food intake in rodents382, and while acute administration of the GLP-1R antagonist exendin 

9-39 did not consistently elicit acute hyperphagic responses383-386, chronic treatment with the 

antagonist did produce profound hyperphagia and fat mass accumulation387. Peripheral 

administration of GLP-1R agonists can also reduce food intake386,388 . The GLP-1R agonist, liraglutide, 

is now clinically used as a weight-loss remedy in conjunction with lifestyle modifications in 

obese/overweight individuals389. In addition, exaggerated postprandial GLP-1 release is believed to 

contribute to the increased satiety reported by many gastric-bypass surgery patients50,390,391.  

There are several ways in which GLP-1 exerts its anorectic effect (Figure 1.3.8). In humans, acute 

administration of pharmacological doses of GLP-1 significantly induce satiety and reduce food 

intake380,392,393, an effect that is abolished in truncally vagotomised humans369. Similar effects are also 

observed in rodents, in which acute peripheral administration of GLP-1 or its analogues significantly 

reduce meal size and meal frequency in a vagus-dependent manner244,394. The nodose ganglia 

express GLP-1R244,332,395 and considering the short half-life of endogenous GLP-1, it is proposed that 

GLP-1 released by enteroendocrine L cells following nutrient exposure activates vagal afferent GLP-

1R signalling in a paracrine fashion396,397. Indeed, peripheral administration of GLP-1 activates vagal 

afferents243. The fact that peripheral administration of a high molecular weight, albumin-conjugated 

GLP-1R agonist was effective in reducing acute food intake in rodents398,399 lends support to the 

notion that GLP-1 acts peripherally to induce satiety. Part of this acute anorectic effect is attributed 

to the potent inhibitory effect of GLP-1 on gastric emptying, thereby delaying the relief from meal-

induced gastric distension and reduces appetite400. This vagal signal is also relayed to appetite 

control centres, namely the NTS in the brainstem to reduce food intake401. Peripherally administered 
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GLP-1 activates neurons in the area postrema, caudual nucleus tractus solitaries, the lateral 

parabrachial nucleus and the central nucleus of the amygdala, as evidenced by increased c-Fos 

immunoreactivity in these brain regions upon intraperitoneal GLP-1 administration388,402. However, 

weight-loss achieved with chronic administration of the GLP-1R agonist, liraglutide, is independent 

of vagal signalling377,403. The chronic anorectic effect of liraglutide is preserved in autonomic nerve-

specific Glp1r knockout mice and the cumulative food intake over 14 days of these mice was no 

different from that of wildtype mice377. It is well-established that tachyphylaxis quickly develops 

towards the decelerating effect of GLP-1 on gastric emptying404, which is vagally-mediated368. 

Therefore, it is possible that other vagally-mediated anorectic signals are relatively short-lived and 

hence, not implicated in long-term energy balance. Indeed, the inhibitory effect of liraglutide on 

gastric emptying was markedly attenuated in rats after twice-daily administration over two weeks 

despite the treatment significantly reducing bodyweight of the treated animals405. Nonetheless, 

under normal physiological settings, GLP-1 levels are only elevated transiently and thus, this 

pathway should be considered physiologically relevant in inhibiting short-term food intake. 

In addition to acting on peripheral targets, there is now strong evidence showing that peripherally 

administered GLP-1 and GLP-1R agonists have considerable access to circumventricular organs and 

some hypothalamic regions behind the blood brain barrier, likely through the fenestrated capillaries 

that are highly abundant in these areas403,406,407. The weight loss effect of peripherally administered 

liraglutide is dependent on the arcuate nucleus (ARC)403, a hypothalamic nucleus that is pivotal in 

long-term appetite control408. Although mice with POMC-neuron-specific Glp1r knockdown did not 

differ in body weight or acute food intake from their wildtype counterparts on a standard chow 

diet378, they did gain more weight and fat mass after high-fat feeding403. Such findings suggest that 

GLP-1R in the ARC could play a role in maintaining energy homeostasis under metabolic stress such 

as DIO. Liraglutide activates the anorexigenic CART/POMC neurons in the ARC by directly binding to 

GLP-1R on these neurons, which then act on other hypothalamic targets such as the paraventricular 

nucleus of the hypothalamus and the lateral hypothalamic area to induce satiety408,409. Moreover, 

liraglutide reduces food intake by decreasing feeding drive by indirectly inhibiting the firing of 

orexigenic NPY/AgRP neurons in the ARC. Although these neurons do not express GLP-1R, 

liraglutide-activated CART/POMC neurons inhibit NPY/AgRP neurons through GABAergic 

interneurons in the ARC403. Mice pair-fed to their liraglutide-treated counterparts had higher levels 

of Npy/Agrp expression, which implies GLP-1R activation in the ARC significantly induces satiety 

without increasing hunger secondary to reduced food intake. Moreover, GLP-1 is implicated in 

regulating hedonic eating through brainstem GLP-1Rs410,411. Direct activation of GLP-1R in the NTS of 

rats significantly reduced acute intake of palatable food410 but not normal chow412. This is 
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complemented by a recent report showing selective knockdown of Glp1r in NTS neurons in rats 

markedly increased the motivation to work for palatable food in operant responses experiments413. 

Given GLP-1 has a very short half-life, these central actions are likely to be more relevant in 

pharmacological settings, such as the chronic use of DPP4-resistant GLP-1R analogues or in post-

gastric bypass surgeries, in which postprandial GLP-1 response are profoundly exaggerated such that 

the levels reaching these central targets are sufficient to elicit anorectic responses. 

 

Figure 1.3.8 GLP-1 contributes to negative energy balance by reducing food intake. Acute anorectic 
effects are likely mediated by vagal afferent GLP-1R while chronic anorectic effect is mediated by 
arcuate nucleus (ARC) neurons in the hypothalamus (hyp): GLP-1 directly activates the anorexic 
POMC/CART neurons and indirectly inhibits the orexigenic NPY/AgRP neurons by acting on GABA 
interneurons. GLP-1 also modulates hedonic eating behaviours by acting of NTS neurons in the 
brainstem. SFO: subfornical organ; PVN: paraventricular nuclues; AP: area postrema. Reprinted from 
reference 414.  

Several groups reported that GLP-1R agonist-treated mice lost considerably more weight than their 

pair-fed littermates403,415,416, indicating that the treatment could also increase energy expenditure415-

417. However, the underlying mechanisms that can account for this difference have not been fully 

elucidated. While there is some evidence that GLP-1R agonists increase diet-induced 

thermogenesis416, its effect on energy expenditure is so far largely inconclusive as others have found 
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GLP-1R agonists had no significant influence403 and one study showed that whole body Glp1r-/- mice 

had higher energy expenditure than wildtype mice418. The latter finding is consistent with a recent 

study that showed pan-hypothalamic, but not POMC- or Sim1-neuron-specific Glp1r knockdown 

(Sim1 is a crucial transcription factor for the development of PVN neurons419), increased energy 

expenditure in mice, although this was accompanied by significantly higher food intake, which 

resulted in a lack of any net effects on body weight378. To date, most evidence supports the notion 

that peripheral GLP-1 contributes to, but is not crucial in, maintaining energy homeostasis, in 

contrast to its pivotal role in maintaining glucose homeostasis.  

1.3.5.2 Glucagon-like Peptide 2 (GLP-2) 

GLP-2 is a 33 amino acid peptide that is co-secreted with GLP-1 by L cells in an equimolar ratio upon 

nutrient ingestion420. GLP-2 is subjected to the same enzymatic degradation as GLP-1, although its 7-

minute half-life is considerably longer than the half-life of GLP-1421. GLP-2 acts on GLP-2 receptors 

(GLP-2R) to exert trophic effects on intestinal epithelia by enhancing crypt cell proliferation and 

inhibiting apoptosis. As such, GLP-2 plays a beneficial role in adaptive intestinal growth, the 

maintenance of the integrity of the intestinal mucosa and the regulation of nutrient digestion and 

absorption422,423. The GLP-2R agonist teduglutide is used clinically to improve intestinal function in 

patients with small bowel syndrome424. Despite the structural similarity with GLP-1, GLP-2 has no 

known insulinotropic effect425. Although pancreatic α cells express functional GLP-2R426 and despite 

its considerable glucagonotropic effect at supraphysiological doses, exogenous GLP-2 infusion had 

no significant effects on plasma glucose levels in humans427. Some rodent studies have argued for a 

role of GLP-2 in maintaining glucose homeostasis and energy balance but this has not been 

investigated in humans428.  

1.3.5.3 Oxyntomodulin (OXM) 

Oxyntomodulin was once referred to as “gut glucagon”429 or “enteroglucagon”430, owing to its 

glucagon-like immunoreactivity431 and its ability to stimulate cAMP production in hepatocytes in a 

similar fashion to glucagon429. It was later deduced that OXM is a 37-amino acid peptide that 

contains the entire amino acid sequence of glucagon430 (Figure 1.3.1) and is co-secreted with GLP-1 

by enteroendocrine L cells at an equimolar ratio432. Therefore, stimulants that trigger the release of 

GLP-1 would also trigger the release of an equal amount of OXM. While OXM stimulates the fundic 

glands of rat stomachs433 and inhibit gastric acid secretion, from which its name was derived 

(“modulator of the oxyntic glands of the stomach”)433, a receptor specific for OXM has not yet been 

identified434. Despite its weak agonist activity at both GLP-1R435 and GCGR436, the functional 

significance of OXM under normal physiological conditions remains unclear. The potencies of OXM 

at GLP-1R and GCGR are in the nanomolar range434,437,438 but circulating levels of OXM are typically 0 
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- 30 pM, although this can increase by up to 10-fold in post-RYGB patients432. While postprandial 

levels of OXM are significantly lower in obese or T2D patients when compared with healthy control 

subjects432, the physiological relevance of such difference remains uncertain. Nevertheless, 

pharmacological levels of OXM (sufficient to activate GLP-1R and GCGR) have anti-obesity effect in 

humans as it significantly reduced appetite439,440 and increased energy expenditure441. In addition, 

OXM treatment improved glucose tolerance in high-fat fed mice by potentiating GSIS442 in a glucose-

dependent manner443 and has anti-apoptotic effects on β cells443. OXM infusion significantly reduced 

glycaemic excursions by augmenting glucose-dependent insulin secretion in obese subjects with or 

without T2D444. Together, these observations prompted the investigation into the potential 

metabolic benefits of the co-activation of GLP-1R and GCGR445,446, which led to the subsequent 

development of GLP-1R/GCGR co-agonists238,447, and later, GIPR/GLP-1R/GCGR tri-agonists448 

(discussed in detail in section 1.3.5.5). The anti-obesity effect of some of these agonists are currently 

being evaluated in clinical trials449. 

1.3.5.4 Glicentin and glicentin-related pancreatic polypeptide (GRPP) 

Contrasting the extensive amount of research about other PGDPs, only a very limited body of 

published literature describes the functions of glicentin and its cleavage product, glicentin-related 

pancreatic polypeptide (GRPP). Similar to oxyntomodulin, no receptors specific for the two peptides 

have yet been identified. Glicentin inhibits gastric acid secretion in rodents and may play a role in 

controlling GI motility but appears to have no significant effect on glucose homeostasis or energy 

balance450. However, glicentin1-61, a cleavage product of the parent peptide glicentin1-69, is a weak 

agonist at GCGR and has significant insulinotropic effects, although it is suggested that this cleavage 

product is likely to be of pancreatic origin451. GRPP, on the other hand, has no agonist or antagonist 

activity on GCGR and GLP-1R and inhibits GSIS in isolated rat pancreas, although this effect was not 

observed in isolated rat islets452. Therefore, the physiological significance of glicentin and GRPP 

remains to be investigated.   

1.3.5.5 Glucagon 

Glucagon is a 29-amino acid peptide hormone and one of the many products of the glucagon (GCG) 

gene. Secreted glucagon acts on the Gs-coupled glucagon receptor (GCGR) to activate adenylyl 

cyclase, to then increase cAMP and intracellular Ca2+ concentrations453. GCGRs are highly expressed 

in the liver and the kidneys while smaller amount of GCGR mRNA is present in the heart, adipocytes, 

brain, retina and the endocrine pancreas454,455. Although glucagon is primarily produced by 

pancreatic α cells, it is not the body’s only source of glucagon. Early studies demonstrated that 

unlike insulin and C-peptide, circulating glucagon-like immunoreactivity remained detectable in 

humans that had undergone total pancreatectomy 456,457, a surgery that would have theoretically 
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eliminated the body’s only source of glucagon 458. Such findings were complemented by evidence 

that the gut epithelium was a source of extra-pancreatic glucagon 457,459-462. This notion is strongly 

supported by results from a recent study that showed the release of extra-pancreatic glucagon in 

pancreatectomized patients was triggered by enteral, but not parenteral glucose463. Figure 1.3.9 

summarizes the physiological actions of glucagon. The following sections focus on the metabolic 

effects of glucagon.  

 

Figure 1.3.9 The physiological actions of glucagon. Glucagon increases hepatic glucose output by 
acting directly on the liver and indirectly via central mechanisms. It is a positive chronotrope and 
increases glomerular filtration in the kidneys. Glucagon promotes negative energy balance by 
inducing satiety in the brain and by acting on adipocytes to promote thermogenesis. Reprinted from 
reference 464.  

1.3.5.5.1 Glucagon and glucose homeostasis 

Glucagon is one of the major counter-regulatory hormones and its release is potently triggered by 

hypoglycaemia465-467. Glucagon is catabolic and promotes the mobilization of glucose from the 

liver468,469. During fasting, the glucagon-to-insulin ratio increases to allow glucagon’s action to 

dominate over insulin, in order to avoid hypoglycaemia and meet the fuel demands of the body7. 

Glucagon acts on hepatic GCGRs to increase circulating glucose by facilitating hepatic glycogenolysis 

and gluconeogenesis6, and may also facilitate gluconeogenesis in renal and intestinal tissue during 
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fasting470. Moreover, glucagon is an important regulator of amino acid turnover, which can further 

influence glycaemia by controlling the availability of glucogenic amino acids471.  

1.3.5.5.1.1 Glycaemic implications of hyperglucagonaemia 

T2D patients and individuals with impaired glucose tolerance have fasting and in particular, 

postprandial hyperglucagonaemia, relative to healthy individuals, despite the fact that they are 

typically hyperinsulinaemic321,472-485. One should not underestimate the significance of postprandial 

hyperglucagonaemia as a major driver of exaggerated postprandial glucose excursions, and 

therefore postprandial hyperglycaemia, in these patients479,486-488. Epidemiological evidence supports 

the notion that postprandial hyperglycaemia is a standalone risk factor for cardiovascular disease in 

diabetes patients, independent of fasting hyperglycaemia489,490. Thus, it is likely that postprandial 

hyperglucagonaemia, together with the loss of incretin effects, plays a significant role in the 

development of impaired oral glucose tolerance in patients with type 2 diabetes and in increasing 

the risk of associated co-morbidities. Conversely, increased fasting levels of glucagon are often 

associated with lower insulin sensitivity and impaired glucose tolerance472,491, which are strong 

predictors of the development of type 2 diabetes. There is also evidence to support a role of 

augmented glucagon secretion in the impaired glucose tolerance arising secondary to the use of 

atypical antipsychotics32,492-495, which is a well-recognized side-effect associated with these 

drugs496,497.  

While glucagon is required for normal β cell function and augments glucose-stimulated insulin 

secretion (GSIS)498-500, there is evidence that hyperglucagonaemia precedes the development, and 

may be a significant driver, of β cell dysfunction501. Indeed, a two-week continuous infusion of a 

stable glucagon analogue significantly impaired in vivo and ex vivo GSIS capacity in β cells, despite 

the expansion of β cell mass in mice502. Hyperglycaemia secondary to hyperglucagonaemia is likely to 

be a significant contributor to glucotoxicity in β cells, which is known to dramatically diminish β cell 

function17-21 and to attenuate insulin-mediated glucose disposal485,503. Longstanding hyperglycaemia 

can also cause glucotoxicity in pancreatic β cells, leading to progressively attenuated insulin 

secretion17-20,485,504-507, progressive disinhibition of glucagon secretion by α cells, and a cycle of 

perpetually worsening hyperglycaemia. It is therefore unsurprising that declining β cell function in 

newly diagnosed type 1 diabetic children is closely associated with increased plasma glucagon 

levels508, and that type 1 diabetes patients are characterized by pronounced concomitant 

insulinopaenia and hyperglucagonaemia321,472.  

The notion of hyperglucagonaemia as a main driver of diabetic hyperglycaemia460,509 and potentially 

life-threatening diabetic ketoacidosis510-512, is strongly supported by studies showing that 
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somatostatin, a potent inhibitor of both α cell and β cell secretion, attenuated severe 

hyperglycaemia in insulinopaenic patients in the absence of exogenous insulin supplementations. In 

addition, somatostatin infusion experiments demonstrated that postprandial hyperglucagonaemia, 

as opposed to insulin insufficiency alone, was a significant determinant of postprandial 

hyperglycaemia observed in both type 1476,488 and type 2 diabetes patients486. 

Whilst it is without doubt that glucagon is a major driver of hyperglycaemia, it is important to 

acknowledge that glucagon’s potent hyperglycaemic effect in normoglycaemic individuals is 

relatively short-lived513-515. The acute hyperglycaemic action of glucagon primarily depends on its 

ability to stimulate hepatic glycogenolysis and thus, is limited by the availability of hepatic glycogen 

stores516,517. This is evident in studies showing that although somatostatin infusion transiently 

reduces blood glucose levels due to attenuation of glucagon secretion, prolonged infusion induces 

hyperglycaemia in non-insulin-depleted subjects. This is due to the potent inhibitory effect of 

somatostatin on endogenous insulin secretion and the waning hypoglycaemic effects of glucagon 

suppression once hepatic glycogen stores are depleted515,516,518. This is also evident in patients with 

glucagonoma, a rare neuroendocrine tumour disease characterized by the hypersecretion of 

glucagon, resulting in plasma glucagon levels more than ten-fold higher than normal519,520. Although 

diagnosis of diabetes are often (but not always) made in these patients prior to diagnosis of the α 

cell tumour (diagnosis is delayed by an average of three years due to the rarity of the disease521), 

many of these patients are only mildly glucose-intolerant despite marked hyperglucagonaemia522,523. 

Indeed, adequate glycaemic control in these patients is often achieved with sulfonylureas or 

exogenous insulin supplementations524-526. To date, only several isolated cases of overt diabetic 

ketoacidosis secondary to glucagonoma have been reported527-530. However, the glycaemic status of 

patients with glucagonomas should be interpreted with caution as such neuroendocrine tumours are 

often poorly differentiated and hypersecrete a myriad of other hormones526, including GLP-1531-534. 

Plasma levels of other hormones are seldom reported, especially in early clinical case reports. 

Moreover, there have been reports of concurrent diagnosis of insulinomas in patients with 

glucagonomas526,535-538, which further complicates the clinical picture. Nonetheless, such 

observations strongly support the role of insulin in maintaining glucose homeostasis in the face of 

profound hyperglucagonaemia. However, the fact that hyperglycaemia could be ameliorated by 

suppressing glucagon secretion, in the absence of insulin, emphasises that diabetes should be 

considered as a bi-hormonal disease539, characterized by insufficient insulin activity and reciprocal 

glucagon hypersecretion45.  
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1.3.5.5.1.2 GCGR signalling as a therapeutic target for diabetes treatment 

Early clinical studies showed that suppressing glucagon secretion in insulinopaenic patients with 

somatostatin infusion powerfully attenuated the severe hyperglycaemia attributed to insulin 

insufficiency460,509. Although somatostatin is highly effective in alleviating acute diabetic 

ketoacidosis540-542 and has been proposed as a potential therapy in diabetes management543, the fact 

that it also inhibits secretion of insulin544 and a myriad of extra-pancreatic hormones545-548, prohibits 

the use of it, and its analogues, as viable anti-diabetic remedies549,550. Nonetheless, these 

experiments did provide strong evidence in support of glucagon as a viable therapeutic target for 

anti-diabetic drugs. 

1.3.5.5.1.2.1 Lessons learnt from various GCGR knockdown models 

Rodent studies have provided powerful evidence supporting glucagon receptor signalling as a critical 

component driving the development of diabetes. It was first demonstrated that hyperglycaemia in 

streptozotocin (STZ, a rodent β cell toxin)-treated rats could be rescued by the use of a GCGR 

antagonist551 or a neutralizing antibody against GCGR alone, without supplementation of exogenous 

insulin552, confirming a primary role of GCGR signalling in this form of hyperglycaemia. It was later 

shown that reducing Gcgr expression by the use of an antisense oligonucleotide in diabetic, obese 

leptin receptor-deficient db/db mice significantly improved glucose tolerance and insulin sensitivity 

without affecting body weight553. These findings were later extended to other diabetic models, 

including the leptin-deficient ob/ob mice and Zucker Diabetic Fatty rats554. Similar observations were 

reported in DIO mice treated with a GCGR antagonist, in which glucose tolerance was markedly 

improved without significant impact on body weight555. Interestingly, Gcgr knockout mice of various 

strains all display markedly improved glucose tolerance and insulin sensitivity in comparison to their 

wildtype littermates, despite the presence of significant hyperglucagonaemia secondary to α cell 

hyperplasia556,557. Further investigations in Gcgr knockout mice revealed that disruption of GCGR 

signalling conferred resistance to HFD-induced obesity and glucose intolerance, as well as HFD-

induced hepatic steatosis558. Intriguingly, Gcgr knockout mice were resistant to STZ-induced 

hyperglycaemia and partly protected from STZ-induced β cell destruction558, in accordance with 

earlier findings that showed pharmacological blockade of GCGR alone could alleviate 

hyperglycaemia in this model of insulin insufficiency551,552. It was subsequently shown that the dose 

of STZ required to fully ablate β cells in Gcgr knockout mice was double that required in wildtype 

animals. Even then, Gcgr knockout mice were still protected from severe hyperglycaemia secondary 

to absolute insulin deficiency559. Other means to disrupt GCGR signalling by near-complete α cell 

ablation560 or a GCGR antagonizing antibody561 were both effective in suppressing STZ-induced 

diabetes in mice, without the need for exogenous insulin supplementation. Indeed, normalization of 
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HbA1c in STZ-treated mice was achieved after 12 weekly injections of the GCGR-antibody561. 

However, it should be noted that hyperglycaemia in STZ-treated mice did not significantly improve 

upon acute disruption of GCGR signalling using a GCGR antagonist or a neutralizing anti-glucagon 

monoclonal antibody562, demonstrating that the glucose-normalizing benefits of GCGR antagonism in 

the face of total β cell ablation occur over a longer timeframe. Nonetheless, such results strongly 

support the diabetogenic nature of GCGR signalling during insulin deficiency.  

1.3.5.5.1.2.2 The liver is the major target of the hyperglycaemic effect of glucagon 

Increased hepatic glucose output is one of the main drivers of hyperglycaemia in patients with 

diabetes563,564. Hyperglucagonaemia is a major contributing factor474 as glucagon is a potent 

stimulant of hepatic glucose production6,565. The relevance of the liver-islet α cell axis is underscored 

by the fact that mice with hepatocyte-specific Gcgr ablation displayed a similar improvement in 

glucose tolerance to their full body knockout counterparts566. GCGR activation in hepatocytes results 

in upregulation of key glucogenic enzymes such as glucose-6-phosphatase and phosphoenolpyruvate 

carboxykinase567. Unsurprisingly, the glycaemic benefits conferred by GCGR antagonism are believed 

to be primarily driven by a corresponding reduction in hepatic glucose output341,554,560. Hepatic 

gluconeogenic genes were significantly downregulated while hepatic glycogen content was higher in 

Gcgr antisense oligonucleotide-treated rats554, in mice with α cell ablation560 and in Gcgr knockout 

mice559, compared with their corresponding controls. GCGR antagonists may also improve glucose 

tolerance independent of hepatic glucose outputs, with evidence that hepatic GCGR activation 

increases the secretion of the neuropeptide Kisspeptin 1, from the liver, which acts via the 

Kisspeptin 1 receptor on β cells to inhibit cAMP synthesis and attenuate GSIS568.  

1.3.5.5.1.2.3 Other mechanisms underlying metabolic benefits of GCGR knockdown 

Plasma GLP-1 levels increase substantially in patients treated with a GCGR antagonist569, consistent 

with the higher GLP-1 levels observed in different animal models of disrupted GCGR 

signalling341,554,557,558,566,570. Indeed, elevated GLP-1 levels in these models are partly responsible for 

improved glucose tolerance69, as pharmacological or genetic disruption of GLP-1R signalling reverses 

some, but not all, of the glycaemic benefits conferred by Gcgr ablation alone341. A recent study 

demonstrated it is specifically the increased levels of islet-derived GLP-1, rather than intestine-

derived GLP-1, that contributes to the improved oral and intraperitoneal glucose tolerance of mice 

with disrupted GCGR signalling312. However, despite the absence of GLP-1, whole body Gcg knockout 

mice display superior glucose tolerance compared to their wildtype counterparts312,571-574. The 

phenotype of whole body Gcg knockout mice closely resemble that of Gcgr knockout mice312,575, 

which implies glycaemic benefits conferred by attenuated glucagon action are largely independent 

of enhanced GLP-1 action. It is possible that the lean phenotype conferred by genetic ablation of 
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Gcgr556,557,559 may contribute to improved insulin sensitivity and glucose tolerance. It should be noted 

that other methods of GCGR inhibition were equally effective in improving glucose tolerance without 

affecting bodyweight553-555,561.  

Based on these pre-clinical results, several orally-available GCGR antagonists have entered clinical 

trials and demonstrated impressive glucose-lowering efficacy in T2D patients569,576,577. However, 

GCGR antagonists are not without undesirable side effects. Safety concerns related to off-target 

effects such as elevated blood pressure578 and LDL cholesterol579 have been reported. Concerns over 

potential liver toxicity579 have been raised as GCGR signalling is heavily implicated in hepatocyte 

survival580. Indeed, increased liver fat disposition and liver enzyme levels were reported in patients 

treated with GCGR antagonists579. 

1.3.5.5.2 Glucagon and energy homeostasis 

1.3.5.5.2.1 Glucagon induces satiety 

Peripherally administered glucagon significantly reduces food intake in humans439,581-583 while 

neutralization of glucagon with antibodies directed at the peptide potently increase acute food 

intake in rats584. Such an effect is likely mediated by a direct activation of GCGR-expressing vagal 

afferent nerve terminals585 since glucagon has limited access at the blood brain barrier 586,587 and 

vagotomy blunts the anorectic effect of glucagon588. Subcutaneous glucagon injection increases c-

Fos immunoreactivity in the area postrema, the cadual NTS, the central nucleus of the amygdala and 

the parabrachial nucleus, the same regions within the brainstem and the hypothalamus that are 

activated by peripheral GLP-1 administration388, which has well-characterized satiating 

effects69,575,589,590. Co-administration of glucagon and GLP-1 at doses that were insufficient to cause 

significant neuronal activation in these areas significantly reduced food intake in mice and increased 

c-Fos expression in brain regions that are implicated in appetite control591, such as the area 

postrema and central nucleus of the amygdala388. Thus, it is possible that the two proglucagon-

derived peptides share the same CNS targets to induce satiety and reduce food intake 

postprandially. Moreover, the anorectic effect of glucagon could be mediated by the central 

melanocortin system, as GCGR co-localises on hypothalamic orexigenic AgRP neurons592 and 

injection of glucagon into the arcuate nucleus decreases AgRP mRNA levels593. Glucagon may also 

induce satiety by promoting intestinal gluconeogenesis470, which substantially increases portal 

glucose concentrations and subsequently activates glucose sensors along the portal vein and relays 

the signal to hypothalamic nuclei involved in appetite regulation to reduce food intake594-596. The fact 

that a protein rich meal is a potent stimulant of glucagon secretion in vivo479,597,598 and dietary 

protein is a potent activator of intestinal gluconeogenesis595,599 strongly supports the notion that 
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glucagon-induced intestinal gluconeogenesis is implicated in the satiating effects of dietary 

proteins595.  

1.3.5.5.2.2 Glucagon increases energy expenditure 

Parenteral administration of glucagon increases energy expenditure in humans600-604 likely by 

stimulating the secretion of fibroblast growth factor-21605-607, which directly stimulates lipolysis in 

adipose tissue608, and promotes thermogenesis, white adipose tissue browning and weight loss609. 

On the other hand, glucagon is a prominent regulator of hepatic lipid metabolism. GCGR signalling is 

essential for the suppression of hepatic lipogenesis610 and triglyceride synthesis and secretion611, 

while glucagon also promotes β-oxidation of hepatic free fatty acids611,612. Glucagon action is 

implicated in exercise-induced reversal of fatty liver in mice613. Although GCGR knockout mice 

display a lean phenotype557, several animal models with disrupted GCGR signalling have increased 

hepatic lipid accumulation553,560 and increased levels of LDL557,611. Moreover, a recent phase II clinical 

trial demonstrated that the chronic use of an orally available GCGR antagonist was associated with 

significant increase in hepatic fat accumulation579. Taken altogether, these reports suggest glucagon 

plays an important role in preventing lipid deposition in the liver and the development of non-

alcoholic fatty liver disease. 

1.3.5.5.2.3 Therapeutic potential of GCGR activation 

GCGR signalling is a highly attractive anti-obesity target as glucagon has anorectic effects and can 

increase energy expenditure. However, its potent hyperglycaemic effect proves to be a major 

obstacle for the use of GCGR agonists alone as a weight loss strategy. Nevertheless, a series of proof-

of concept experiments demonstrated that the metabolic benefits of glucagon could be safely 

harnessed when GLP-1R was concomitantly activated to circumvent its hyperglycaemic effects614. 

GLP1-R agonists (GLP-1RAs) have recently been approved as an anti-obesity treatment389, although 

the clinically relevant weight loss achieved (5-10 %) is generally less than what is desirable in the 

severely obese. Pocai and colleagues were the first to reveal that GCGR activation by a GLP-1R/GCGR 

co-agonist, administered on alternate days, caused significant and additional reductions in food 

intake and body weight in DIO mice over 13 days compared to GLP-1RA treatment alone. These 

effects were predominantly driven by the loss of fat mass and mice also displayed marked 

improvements in glucose tolerance615. A single injection of a GLP-1R/GCGR co-agonist dose-

dependently reduced bodyweight and fasting blood glucose levels of DIO mice over a week without 

acute dysglycaemia616. Follow-up experiments showed these effects were sustained over a month 

upon weekly injections at a lower dose, with mice showing marked improvements in glucose 

tolerance and insulin sensitivity, accompanied by increased energy expenditure and reduced fat 

mass616. Furthermore, these effects were also observed in rats, indicating they were not species-



 

35 
 

specific. The anorectic effects of GCGR agonism are likely to be mediated by satiety signalling of 

peripheral sensory nerves, as centrally administered glucagon to the arcuate nucleus was ineffective 

in reducing food intake in DIO rats593. Importantly, the co-agonist caused significant weight loss and 

reduced fat mass in Glp1r deficient mice, indicating that GCGR agonism was the driver of weight loss 

in these DIO animals. Interestingly, Glp1r deficient mice treated with the co-agonist showed a 

tendency toward hyperglycaemia, suggesting that GLP-1R agonism may confer protection against 

hyperglycaemia induced by GCGR activation615,616.  

Further studies revealed the GLP-1R/GCGR co-agonist was effective in reversing leptin resistance in 

DIO mice, which is likely to contribute to weight loss in addition to that driven by GCGR/GLP1R co-

agonism since leptin itself is a potent anorectic hormone617,618. Indeed, exogenous leptin significantly 

reduced food intake in co-agonist treated DIO animals, compared to animals treated by the co-

agonist alone447. The metabolic benefits of exogenous leptin were not sustained upon 

discontinuation of the co-agonist treatment in these animals, suggesting GCGR agonism preserved 

leptin sensitivity in the DIO model. To further improve the profile of the co-agonist, a 

GCGR/GLP1R/GIPR tri-agonists were subsequently developed to take advantage of the additional 

benefits of GIPR stimulation448 in improving glucose tolerance but with minimal effect on body 

weight238. The tri-agonist demonstrated superior efficacy in both glucose tolerance and weight loss 

in DIO mice, and the authors convincingly showed using various loss-of-function models that GCGR 

activation was the main driver for the observed improvement in a range of metabolic parameters 

and it did not exacerbate HFD-induced hyperglycaemia due to the protection conferred by GLP-

1R/GIPR co-agonism448.  

Stage I clinical experiments confirmed the metabolic benefits conferred by GCGR agonism observed 

in rodent models could be translated to human, as co-infusion of GLP-1 and glucagon in healthy 

human volunteers significantly attenuated the hyperglycaemic effect of glucagon while preserving 

desirable effects on energy expenditure and appetite suppression601. Consistent with rodent studies, 

co-infused glucagon and GLP-1 exert synergistic effects on satiety and reduce food intake in healthy 

volunteers601,602. The pivotal role of GLP-1R agonism in balancing the hyperglycaemic effects of GCGR 

agonism may, however, limit the use of such a therapy in insulin-deficient or severely resistant 

patients, since much of the desirable glucose-lowering effect of GLP-1 is attributed to its 

insulinotropic and glucagonostatic effects. However, phase 1-2 clinical trials of alternative GCGR 

agonists with agonist activity at various other receptors are currently underway449.  
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1.3.6 Peptide YY (PYY) 

While not structurally related to PGDPs, Peptide YY (PYY) is co-localized with GLP-1 in 

enteroendocrine L cells107,619-621 and is co-released with GLP-1 postprandially in proportion to caloric 

intake620,622. Human PYY circulates in two active forms: PYY1-36 and PYY3-36, the latter being a cleavage 

product of the former by DPP4623. In contrast to GLP-1, which is present in sufficient amounts in the 

duodenum to account for the immediate postprandial surge, PYY abundance is very low in the upper 

gut and increases distally from the ileum to the colon624,625. Thus, postprandial PYY release under 

normal physiological conditions is likely to be mediated through paracrine and neural 

mechanisms626. The exaggerated postprandial PYY response observed in post-gastric bypass or 

Endobarrier patients is likely attributed to direct nutrient stimulation of PYY cells as there is an 

increased flow of nutrients into the PYY-rich distal gut627,628. The physiological effects of PYY are 

mediated through a family of NPY receptors (termed Y1, Y2, Y3, Y4, Y5 receptors), which are 

differentially expressed in a wide range of tissues such as enterocytes, myenteric and submucosal 

neurons and extrinsic primary afferent nerve fibres626. PYY1-36 and PYY3-36 are important regulators of 

GI functions; such as the ileal and colonic brake629. PYY also inhibits gastric and pancreatic secretion 

while increasing fluid and electrolyte absorption throughout the GI tract630. 

1.3.6.1 PYY and energy balance 

PYY3-36 is a potent anorectic hormone with administration of exogenous PYY significantly reducing 

food intake in both obese and lean humans631,632. While the “ileal brake” contributes to this satiating 

effect633, PYY3-36 induces satiety primarily by targeting the hypothalamus. PYY3-36 is highly selective 

for Y2Rs found on NPY/AgRP neurons in the arcuate nucleus. Activating these receptors suppresses 

the release of the orexigenic neuropeptides NPY and AgRP, subsequently disinhibiting the release of 

the anorectic α-MSH from neighbouring POMC neurons to reduce food intake408,632. Pyy-deficient 

mice are hyperphagic and obese634 while overexpression of Pyy protects mice against DIO or leptin 

deficiency635. PYY may also increase energy expenditure635-637. As such, the exaggerated postprandial 

PYY response observed in post-bariatric patients has been proposed as one of the underlying 

mechanisms for the dramatic weight loss achieved by the procedure390,638. 

1.3.6.2 PYY and glucose homeostasis 

Studies aimed at investigating the glycaemic effects of PYY have also yielded conflicting results. 

Acute PYY administration improved intraperitoneal glucose tolerance in mice639, although a lack of 

effect has also been reported640. Acute PYY treatment also augments insulin-mediated glucose 

disposal in high-fat fed mice641. However, PYY infusion in humans had no significant effect on plasma 

glucose, insulin or glucagon levels631,642, nor did it affect glucose excursion and insulin level upon 

intravenous glucose challenge643. Despite the potent inhibitory effects of PYY on gastric emptying644, 
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which in principle would reduce postprandial glucose excursions645, acute PYY administration did not 

appear to have any significant impact on oral glucose tolerance in rodents646 or humans636. PYY may 

restore normal islet function after RYGB as the peptide was identified as the humoral factor from 

RYGB rats that could correct impaired glucose-induced hormone secretion in islets isolated from 

diabetic rats647. Moreover, treating human islets with high concentrations of PYY significantly 

improved GSIS, although the in vivo physiological relevance remains to be determined as the PYY 

concentrations used in these experiments were several orders of magnitude higher than normal 

postprandial plasma PYY concentrations. While there have been studies demonstrating potential 

trophic effects of PYY on pancreatic β cells648, such effects are believed to be mediated by islet-

derived, rather than gut-derived PYY649.  

1.4 Why study L cells?  

Enteroendocrine L cells are of special interest because their secretory products, namely GLP-1 and 

PYY, are implicated in a range of favourable metabolic functions and have been attributed to the 

metabolic gains from gastric bypass surgeries77,90-92. Thus, one of the approaches to create a 

“bariatric mimetic” would be to develop a specific L cell secretagogue, which could reproduce the 

exaggerated secretory responses observed in post-gastric bypass patients. However, the underlying 

mechanisms that regulate the secretory function of L cells remains largely unknown, due to the lack 

of a suitable and easily translatable model. To date, there is no means to study primary 

enteroendocrine L cells in viable pure culture. In the following section, the current models that are 

used to study L cell physiology are discussed.  

1.4.1 GLUTag cells (Murine) 

GLUTag is a cell line derived from a colonic tumour induced in the GLUTag transgenic mice. This 

lineage of transgenic mice was generated using the GLUTag2.3 transgene, which was constructed 

with approximately 2000 bp of the rat proglucagon 5’-flanking region aligned to the SV40 large T 

antigen (TAg) gene650. The SV40 TAg is an oncoprotein commonly used for transformation and 

immortalization of primary cells651. The inclusion of the 2000 bp segment proved to be pivotal for 

intestinal-specific expression of the large T antigen as an earlier experiment using only 800-1000 bp 

of the rat proglucagon 5’-flanking region (designated GLUTag1.3) only resulted in expression by 

pancreatic cells and specific neurons in the brain of the transgenic mice652. The transgenic mice 

expressing the large T antigen in the intestinal epithelia developed tumours in the large bowel and 

the tumour fractions were used to inoculate nude mice. The inoculated mice subsequently 

developed tumours in the colon and immunohistochemistry of these tumours revealed that tumour 

cells stained for both glucagon and GLP-1 (but only a limited portion of tumour cells stained for 
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PYY)650. The authors later described the processing of proglucagon-derived peptide in GLUTag cells 

as “somewhat aberrant and intermediate between pancreatic α cells and intestinal L cells”, as it is a 

cell line that produces both glucagon and GLP-1653. Despite the significant differences in post-

translational processing of the proglucagon peptide between native L cells and GLUTag cells, the cell 

line has been widely used as a model for enteroendocrine L cells654-671 and commonly referred to as a 

“murine L cell line”672-685. GLUTag cells contain multiple other hormones including CCK and 5-HT686, 

possibly because these tumour cells were not well-differentiated from their pluripotent stem cell 

precursors. Alternatively, it could be due to the plasticity of endocrine tumour cells.  

Numerous studies have been conducted using GLUTag cells to elucidate mechanisms that could 

potentially trigger GLP-1 release in L cells. Consistent with previous observations using the enriched 

canine L cell culture and Foetal Rat Intestinal Culture (FRIC) models (discussed in sections 1.4.3 and 

1.4.4, respectively), GLP-1 release by GLUTag cells was stimulated upon increased intracellular cAMP 

levels655 and the subsequent activation of PKA682,683. GLUTag cells also express PC1/3, the enzyme 

responsible for post-translational processing of the proglucagon peptide in primary L cells69. It is 

interesting to note that the expression of PC1/3 in GLUTag cells also appeared to be induced by PKA 

activation682, which is consistent with an earlier observation in the FRIC model687. Later studies 

demonstrated PC1/3 expression in GLUTag cells was also modulated by glucose concentration678. 

GLUTag cells are highly sensitive to glucose and this sensitivity appeared to be mediated by KATP 

channels, SGLT1 & 3, GLUT1 and GLUT5657. GLUTag cells are also responsive to both insulin672 and 

GIP683. However, the physiological implications of these observations might be questionable as the 

concentrations of insulin and GIP used in these studies were supraphysiological688,689. Notably, PYY is 

not detected in GLUTag cells690, which is in contrary to native L cells620,691,692.  This finding strongly 

refutes the notion of GLUTag as a valid “L cell line”. Nevertheless, GLUTag cells remain one of the 

most widely used models to study L cell secretion.  

1.4.2 NCI-H716 cells (Human) 

The NCI-H716 cell line was first established by Park et al. in 1987 from a human colorectal tumour693. 

These cells were described as being poorly differentiated and displayed enteroendocrine 

characteristics. Further characterizations suggested the cell line comprised a mixture of exocrine and 

endocrine cells, as evident by mucin- and chromogranin A-staining, respectively. Interestingly, some 

of NCI-H716 cells were classified as amphicrine, as they contained both mucin vacuoles and dense-

core secretory granules. It was also found that the NCI-H716 cells express gastrin, 5-HT and 

somatostatin receptors694. The endocrine characteristics could be further enhanced by co-culturing 

with fibroblasts or culturing in native extracellular matrices (ECM) (amnion membrane, colonic ECM 

and Basement Membrane Matrigel)695. This cell-line was not very intensively studied since its 
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establishment until Reimer et al. suggested that the NCI-H716 cell-line might serve was a human 

cellular model for studying the secretion of GLP-1696. Given the intense clinical interest in GLP-1, the 

NCI-H716 cell line has since been extensively used as a model for studying GLP-1 secretion in the 

intestine. However, whilst an array of published work conveniently referred the NCI-H716 cell-line as 

a human enteroendocrine L cell line249,673,678,697-700, such a reference was never made by either Park 

et al. or Reimer et al.. NCI-H716 cells are aneuploid, containing from 55 to 64 chromosomes694 and it 

is not known how these extra chromosomes contribute to cellular processes in the NCI-H716 cells. 

Moreover, there is major disparity between the secretory repertoires of native L cells and NCI-H716 

cells. The fact that PYY secretion cannot be detected in NCI-H716 cells strongly argues against its use 

as a reliable model of human L cells690.  

1.4.3 STC-1 cells (Murine) 

STC-1 is a GLP-1 secreting cell line derived from a murine invasive small intestine neuroendocrine 

tumour701. This cell line secretes a wide range of gut hormones, especially those characteristic of the 

stomach, such as secretin and gastrin702 and has been deemed to bear the least resemblance to 

native L cells, when compared with GLUTag and NCI0H716690. As such, STC-1 cells are less often used 

for studying L cell physiology.   

1.4.4 Enriched Canine L cell culture 

This is one of the earliest protocols for L cell enrichment in primary culture. Briefly, canine intestinal 

mucosa was isolated, minced and enzymatically digested. Enrichment was achieved by subjecting 

the mucosal cell suspension to elutriation703. Further optimization of the protocol resulted in a purity 

of 20-25 % of L cells culture704. However, this model was not too widely adopted due to the relative 

high cost of producing only partly purified L cell cultures.  

1.4.5 Foetal Rat Intestinal Culture (FRIC) 

This is a model originally developed by Brubaker et al. where the whole intestine of a foetal rat was 

dissected, minced, enzymatically digested and filtered to achieve separation of intestinal cells705. 

This resulted in a mixture of single cells, cell clusters and small fragments of the dissected intestine. 

Due to the heterogeneity of cells in culture, it is therefore difficult to differentiate direct and indirect 

effects of test reagents on L cells. Although no longer widely used, this in vitro model did provide 

valuable information of L cell physiology. It enabled early studies of L cell secretion and showed that 

GLP-1 secretion could be stimulated by activation of the adenylate cyclase pathway687, which was 

later supported by studying primary murine L cells692.  
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1.4.6 Fluorescent protein-tagged L cells in transgenic mouse 

This is one of the better models for human L cells currently available as it is a primary culture of 

murine L cells. This model was developed from the generation of a lineage of transgenic mice, in 

which a modified yellow fluorescent protein, Venus (YFP-Venus), is expressed under the control of 

the proglucagon promoter, resulting in targeted expression in L cells in the intestine, pancreatic α 

cells and a subpopulation of NTS neurons in the brainstem692. This strategy was later modified to 

express different fluorescent proteins660,691 and in a different enteroendocrine cell population, such 

as CCK-secreting I cells706 and GIP-secreting K cells707. Using Fluorescence-Assisted Cell Sorting 

(FACS), the researchers were able to sort the intestinal epithelial cells based on the expression of the 

fluorescent protein. FACS-sorted cells could subsequently be used for gene expression and patch-

clamp studies. It was through this approach that the glucose-sensing machinery of L cells was 

elucidated. Although L cells isolated and purified by FACS did not survive long in culture, they could 

be maintained for several days in a mixed-cell culture (either small intestinal or colonic culture) for 

GLP-1 secretion studies. Based on this method, single primary L cells were studied in detail for the 

first time and comparisons with GLUTag cells could be made. While the authors reported that many 

characteristics observed in the GLUTag cell line closely resembled those observed in primary murine 

L cells, such as glucose-sensing ability657,692 and glutamine-stimulated GLP-1 release656,708, there are 

major differences in the gene expression profiles between these cells. Kir6.2 and Sur1 (encode for 

different KATP channel subunits) and Sglt1 (encodes for the sodium-glucose co-transporter, SGLT1), 

were found to be much more highly expressed in these isolated primary L cells than in GLUTag 

cells692. Moreover, Glut2 (encodes for the facilitative glucose transporter, GLUT2) mRNA was 

detected in primary L cells, but not in GLUTag cells657. The two populations were also found to 

expressed different members of the adenylyl cyclase family669 and have different Na+ channel 

subunit composition709. Another noticeable difference between the two populations is their 

sensitivity to short-chain fatty acids (SCFAs), commonly produced by gut flora. Significant SCFA-

stimulated GLP-1 secretion was observed in primary L cells but not in GLUTag cells710. Such 

differences further highlight the significant divergence of cell lines from primary cells. The 

development of this protocol also revealed the fragility of primary murine L cells, in that although 

they are electrically excitable, this excitability was only observed when the L cells were cultured with 

epithelial cells.  

1.4.7 Ex vivo models 

Although in vitro models have provided invaluable insight into L cell physiology, there are significant 

drawbacks with using cell cultures. Cells are removed from their natural environment by digestion 

(typically a combination of EDTA, trypsin and collagnase) and cell-cell contacts are lost in the 
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process. Indeed, detachment from the basement membrane is often a trigger for apoptosis in 

intestinal cells711,712. For the portion of cells that survive the isolation process, the loss of cell-cell 

contacts could still have dramatic functional ramifications. The significance of this is evident in islet 

biology, although researchers could purify individual cell populations and study them in pure culture, 

they are more often study in intact islets. Secretory responses of isolated α and β cells significantly 

differ to that of intact islets713,714 and it is often very difficult to determine if this is an experimental 

artefact. Several ex vivo methods have been employed to overcome these issues.  

1.4.7.1 Intestinal organoid culture 

Although the intestinal epithelium is capable of self-renewing, primary cultures derived from the 

intestine often have limited lifespan. To overcome this, Sato and colleagues developed a 

sophisticated method that allows crypts isolated from murine intestinal tissue to be grown in 

culture715. Intestinal crypts were dissociated through EDTA-chelation of Ca2+ and Mg2+; the isolated 

crypts are then resuspended in Matrigel or other basement membrane matrices and plated. The 

“stemness” of the isolated crypt is preserved by ensuring the composition of the culture medium 

resembles that of the stem cell niche, such that optimal Lgr4/5, EGF, Notch and Wnt signalling is 

achieved enabled while BMP (bone morphogenetic protein) signalling is attenuated. Further 

optimization efforts allowed crypts isolated from human colonic epithelial tissue to be grown into 

organoids in a similar fashion716. These organoids can be passaged at 1:5 ratio weekly and 

intriguingly, it appears that the cultures can be maintain indefinitely as the phenotype and karyotype 

of the organoids remained unchanged for at least 18 months717, which makes it far superior over 

immortalized cell lines, which are highly susceptible to genetic mutations. In addition, organoid stem 

cell differentiation closely mimics that of in vivo stem cells, as evident by the presence of most 

intestinal epithelial cell types including enteroendocrine cells716 in developed organoids. Organoids 

also preserve the features of the intestinal segments that the crypt originates from718, e.g. only ileal 

organoids express the Apical Sodium-dependent Bile acid Transporter (ASBT), which is only 

expressed in the terminal ileum in vivo. The major advantage of using organoids over primary 

cultures of isolated intestinal cell is that the polarity is somewhat maintained. As the organoid 

develops, it undergoes “budding” that results in the formation of crypt-like structures within the 

organoid: microvilli are present on the “luminal side” of the organoid with terminally-differentiated, 

apoptotic cells shedding into this central lumen715. It was demonstrated that intestinal organoids are 

excellent models for studying the physiology of enteroendocrine cells; 5-HT secretion from EC 

cells719 and L cell differentiation720-722 have since been studied in detailed using this technique. 
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1.4.7.2 Isolated perfused animal intestine  

Isolated perfused intestine models of various species have been widely used to study the secretion 

of gut hormones since the 1970s723,724. Optimization efforts by multiple groups723,725-733 have made it 

one of the most physiologically relevant models to study gut hormone release734. After sacrificing of 

the experimental animal, the intestine preparation is arterially perfused with oxygenated buffer 

through the mesenteric artery, the gut lumen is cannulated and perfused with isotonic saline and an 

automated fraction collector collects the vascular effluent from the portal vein at pre-set time 

intervals for downstream analysis. This allows for the interrogation of the mechanisms underlying 

gut hormone secretion in response to changes in the intestinal lumen or vasculature in a manner 

that resembles native physiological environment as the integrity of the organ and local neural 

circuits are preserved. Since the intestine is perfused with oxygen and nutrients, it is not uncommon 

for the preparation to be viable for hours after isolation, with the integrity of the epithelial brush 

border fully maintained after up to 5 hours of perfusion723. This model also allows specific sections of 

the gut to be studied in isolation. Test reagents can be added to either the vascular or luminal 

compartments to discriminate apical from basolateral stimulation. Another major advantage of the 

isolated perfused intestine model is its high versatility; technically, any gut hormone could be 

measured in the collected effluent fractions from one single experiment, provided reliable assays are 

available for the analytes of interest. This model has since been used to study nutrient-induced 

neurotensin secretion from the rat small intestine728,735, pro-GIP processing in mouse intestine736, 

nutrient-induced GLP-1 secretion in rat small intestine186,733,737, GIP-induced GLP-1 release from the 

rat colon727 and duodenal hormone-induced somatostatin and GLP-1 release in porcine ileum732, just 

to name a few. Intriguingly, the perfused rat small intestine model correctly predicted the existence 

of another incretin other than GIP, several years before GLP-1 was discovered726, highlighting the 

physiological relevance of this model.  

1.4.7.3 Ussing Chamber 

Although isolated perfused animal intestines are physiologically relevant, findings in animal models 

may not be fully translated in humans. GLP-1 secretion from the human gut has also been studied 

using a modified Ussing chamber setup with intestinal biopsies collected endoscopically from 

subjects and mounted onto the apparatus738,739. This setup differs from the conventional Ussing 

chamber set up in that it does not measure electrical current moving across the epithelium but 

simply provides a means to maintain polarity of the tissue and the volumes of the two reservoirs are 

significantly smaller than that of conventional setups (0.5-1.5 mL versus 5-10 mL), which enables the 

researchers to quantify the amount of hormone released. Interestingly, results from this approach 

showed that luminal exposure to pea and wheat proteins significantly triggered GLP-1 and CCK 
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release from human duodenal mucosal preparations but not in rats738, emphasising the importance 

of studying human tissue whenever possible for better translational potential.  

1.5 Lost in translation? 

Besides the obvious differences in appearance, there are well documented differences between the 

physiology of rodents and humans740-743. Although “75 % of mouse genes have 1:1 orthologs in the 

human genome”, “mice are not miniature humans”744. These differences are especially widely-

reported in the field of immunology. For example, it was found that Killer immunoglobulin-like 

receptor molecules on murine NK cells are sugars whereas their equivalent in humans are 

proteins740. The translation of efficacy in treatment protocols from animal models to clinical settings 

has more often resulted in disappointment than success and many of the failures can be attributed 

to the ignorance that pathways elucidated in animal models do not neccessarily exist in human741. 

Thus, potential blockbuster treatment protocols developed on the basis of these pathways often 

produced disappointing results in clinicial testing, and in some cases were, potentially dangerous. 

One such example is the  failed clinical trial where altered peptide ligand (APL) peptide was tested as 

a potential treatment for multiple sclerosis. The APL peptide was hypothesized topotentially 

suppress T cell responses via antagonism (or partial agonism) of T cell receptors based on extensive 

studies in animal models. However, the peptide turned out to act as a full agonist in a subgroup of 

patients and thereby exacerbating their disease745. The authors later pointed out that in retrospect, 

such an event could have been predicted had a human polyclonal cell population been used prior to 

clinical testing746.  

The loss in translation is not only observed in immunology. In the area of endocrinology and 

specificly L cell physiology, there are also cases where successes in the laboratory based on in vitro 

and in vivo rodent models failed to translate into beneficial clinical outcomes. One prominent 

example is the potential of GPR119 agonists to be used as secretagogues to stimulate GLP-1 

secretion by intestinal L cells in humans747. GPR119 mRNA was detected in human intestinal 

pancreas and intestine667 and its receptor agonists were shown to increase GLP-1 secretion in vitro 

using both human and murine cell lines667,674,680,748 and in vivo mouse models749-751. However, the 

observed efficacy did not translate into favourable clinical outcomes, as evident by the 

underwhelming performance of the oral GPR119 agnoist, JNJ-38431055. Although well-abosrbed 

and well-tolerated, the drug failed to significantly increase active GLP-1 level in plasma following 

meal-tolerance and oral glucose tolerance tests. Nor did it improve glycaemic control, when 

compared with placebo, and it was inferior to the DPP-IV inhibitor, sitagliptin752. It was later 

reported that a different GPR119 agonist, AR231453, did not trigger GLP-1 release in human primary 
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colonic culture, despite promising results from murine cultures employing similar protocols620. While 

the underlying reasons of such disappointing results are yet to be elucidated, there are several 

possible explanations to the problem. Although the the human and mouse GPR119 share an 82% 

amino acid sequnce identity753, they are not identical. It is speculated the lack of efficacy can be due 

to different receptor-ligand binding interactions between human and rodents754 but this cannot 

explain the efficacy of GPR119 agonists observed in transfected GLUTag cells that expressed human 

GPR119674. Another possible explanation is that there may be fundamental differences in L cell 

signalling between human and rodents. Indeed, it is worthwhile to point out that there is no 

published evidence that supports the expression of GPR119 in human L cells. The closest proof of 

such speculation was the detection of GPR119 mRNA in human intestinal tissue667 but the result was 

not backed by immunostaining for the GPR119 protein in human intestinal tissues, not to mention 

co-staining with proglucagon. GPR119 could well be an excellent target in rodents but in human L 

cells. Failure to bridge such major gaps of knowledge between models in the laboratory and human 

physiology in the clinic will result in more such failures and hinder the development of new 

treatment strategies in combating diseases, not just diabetes. It is therefore crucial to develop 

systems that closely resemble the human in vivo environment. 

1.6 Aims and significance  

The primary aim of this project is to develop a reliable platform that allows for detailed interrogation 

of the mechanims underlying the secretion of GLP-1 and PYY from L cells in the human gut. The use 

of human intestinal tissue as a starting point completely mitigates the issue of species difference and 

thus, such a platform can serve as a valubale intermediary step between rodent studies and clinical 

studies, significantly reducing the risk of expensive failure of clinical developments of any 

therapetuics. The second aim of the project is to determine whether various reported pathways that 

govern GLP-1 secretion in rodents exist in humans. Specifically, pathways governing GLP-1 secretion 

in response to glucose, to the anti-diabetic drug metformin, to endogenous and synthetic agonists of 

the melanocortin 4 receptor, and to interleukin-6 will be investigated. The role of the classical 

endocytotic protein, dynamin, in mediating L cell secretion will also be investigated. The third aim of 

this project is to address the recent report of the presence of extrapancreatic glucagon in human463 

and I hypothesize that the human gut epithelium is a source of fully-processed glucagon.  
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2 Optimization of methods to measure L cell 

secretion from human gut tissue 

2.1 Isolation and enrichment of human L cells 

2.1.1 Introduction 

The secretory responses of L cells to a range of stimuli have been studied predominantly using 

GLUTag cells654-658,668 and primary mixed intestinal epithelial cell cultures95,660,708-710,755-757, owing to 

the fact that FACS-isolated primary murine L cells were not viable for functional studies692. The first 

aim of this project is to develop a method to isolate L cells from human colonic epithelial specimens 

as a highly purified culture such that their secretory responses to various nutrients can be studied in 

isolation. Pioneering work from our laboratory has enabled the isolation of the most abundant 

enteroendocrine cells, the serotonin-secreting enterochromaffin cells from mice, guinea pigs, and 

humans using a Percoll density gradient109. Importantly, these highly-enriched primary 

enterochromaffin cell cultures can be kept viable for a considerable duration (typically up to 48 

hours), which is sufficient time for a range of different functional experiments such as single-cell 

carbon fibre amperometry109,116, flow cytometry115 and secretion studies115,127 to be conducted. 

Based on the reliability of this method, I hypothesized that a cell culture highly-enriched in L cells 

can be obtained using a Percoll density gradient, similar to enterochromaffin cells isolation.  

2.1.2 Methods 

2.1.2.1 Primary culture human intestinal epithelial cells 

Fresh anonymised surgical specimens of human colon were obtained from the Gastroenterology 

surgical department of Flinders Medical Centre and Flinders Private Hospital, Bedford Park, South 

Australia, stored in Krebs buffer and processed within 15-30 minutes of surgery. Tissue samples 

were cleaned of luminal contents and dissected of muscles and connective tissues. Blood cells 

present on the mucosa were gently scraped off. The mucosal layer was carefully torn off the basal 

laminae and chopped finely in Krebs’s buffer into 1-2 mm pieces. The minced mucosa was then 

centrifuged at 500 x g for 5 minutes to remove the Krebs’s buffer. The mucosa was digested with 8 

mL of 0.5% Trypsin-EDTA (Sigma Aldrich, Australia) and 3.6 mL of 1 mg/mL Collagenase A (Roche, 

Australia) in a shaking water bath at 37°C for 40 minutes. The digestion was stopped by adding iced-

cold culture medium (DMEM supplemented with 10% (v/v) fetal calf serum) and passed through a 

stainless steel mesh filter followed by a 40 µm cell strainer (EASYstrainer™, Greiner Bio One 

International). The introduction of a stainless steel mesh filter greatly reduced the time required for 

the digest to pass through the much finer cell strainer by up to 30 minutes. It was observed that a 
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thick mucus layer gradually developed as the digestion progressed and greatly hindered the 

digestion efficacy as the mucous layer prevented the digestive enzymes from accessing the mucosal 

tissue pieces. This mucous layer could not be removed with centrifugation and greatly hindered the 

passage of the digest through the subsequent filtration steps. Thus, 1 mM 1,4-dithiothreitol (DTT) 

was added to the digest as DTT is an effective mucolytic agent758 and is generally suitable for use in 

cell culture759. The filtrate was centrifuged at 800 x g at room temperature for 4 minutes to pellet 

cells. The supernatant was removed and the cell pellet was resuspended in DMEM, plated in a 10 cm 

cell culture dish and let to recover in the incubator (37°C, 95% O2/5% CO2) for at least 30 minutes. 

The whole digestion and filtration process was repeated up to five times to maximize the number of 

cells obtained per specimen.  

2.1.2.2 Fractionation of isolated mixed epithelial cells using a Percoll density gradient 

After recovery, the cell suspension was put through a thirteen-step Percoll density gradient. Isotonic 

Percoll stock solution (referred to as Percoll SIP) was prepared by adding 9 parts (v/v) of undiluted 

Percoll (P1644, Sigma Aldrich) to 1 part (v/v) 1.5 M NaCl. Each 1 mL fraction of the Percoll gradient 

was then made up of varying ratios of Percoll SIP and 0.15 M NaCl as per manufacturer’s instruction 

(Table 2.1). Our laboratory has previously reported the success of using an eight-step Percoll density 

gradient to obtain highly-enriched cultures of serotonin-secreting enterochromaffin cells from 

guinea pig and human colonic mucosae109,116. As alluded before, this method was subsequently 

modified and optimized for the successful isolation of murine enterochromaffin cells113,115. Thus, this 

same protocol formed the basis for my attempt to isolate L cells. Enteroendocrine cells make up 

approximately 1% of the epithelial cells of the gut epithelium760 and enterochromaffin cells 

constitute approximately 50% of the enteroendocrine cell population123. As such, the original eight-

step Percoll density gradient was further fractionated to a thirteen-step gradient in the hope of 

capturing the less-abundant L cells in these new density fractions. Fraction density was calculated 

using a formula provided by the manufacturer (Cell Separation Media Handbook 18-1115-69, GE 

Healthcare): 

𝜌 =  
𝑉𝑖𝜌𝑖 +  𝑉𝑦𝜌𝑦

𝑉𝑦 + 𝑉𝑖
 

Where Vy = volume of diluting medium (mL), Vi = volume of Percoll SIP (mL), ρi = density of Percoll SIP 

(1.123 g/mL), ρy = density of 0.15 M NaCl (1.0046 g/mL).  
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Fraction 

Number 

Volume of Percoll SIP 

(μL) 

Volume of 0.15 M NaCl 

(μL) 

Density of fraction 

(g/mL) 

F1 1000 0 1.123 

F2 600 400 1.07564 

F3 550 450 1.06972 

F4 500 500 1.0638 

F5 450 550 1.05788 

F6 400 600 1.05196 

F7 350 650 1.04604 

F8 300 700 1.04012 

F9 250 750 1.0342 

F10 200 800 1.02828 

F11 150 850 1.02236 

F12 100 900 1.01644 

F13 50 950 1.01052 

Table 2.1.1 Composition and density of each fraction of the Percoll density gradient. 

The Percoll density gradient was constructed in a 15 mL centrifuge tube: 1 mL of F1 was added to 

the bottom of the tube with standard 1 mL pipette and subsequent fractions were carefully layered 

using 1 mL syringe through a 23G needle (the needle was positioned just under the meniscus of the 

top fraction). 1 mL of cell suspension was then carefully layered onto the Percoll density gradient 

and centrifuged at 1100 x g for 8 minutes with slow braking at 20°C. The bottom of the 15 mL tube 

was then pierced with a 25 G needle and fractions were collected into new 15 mL tubes at 1 mL 

intervals. 10 mL 1X phosphate-buffered saline (PBS) (Gibco, Life Technologies) was added to all 13 

collected fractions and centrifuged at 800 x g for 4 minutes to wash off Percoll and pellet cells. The 

cell pellets from each tube were then resuspended in 1 mL fresh DMEM and plated in cell culture 

dishes for recovery in the incubator for at least 3 hours. Cell viability was assessed using the Trypan 

Blue exclusion method. Using the isolation method described above, cell viability of greater than 

90% was typically achieved.  

2.1.2.3 Immunocytochemical analysis of L cell enrichment 

Since immunocytochemical analysis was used for assessing the purity of the enriched 

enterochromaffin culture in previous work from our laboratory109,113,115, I sought to use a similar 

approach to determine the enrichment efficacy of the aforementioned method. Cells from each of 

the 13 fractions were grown overnight on glass coverslips that were pre-coated with laminin and 

poly-D-lysine. Media was aspirated before Zamboni’s fixative was added and the cells fixed overnight 
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(18-20 hours) at 4°C. The fixative was then removed and cells were permeabilized by a series of 5- 

minute washes as follows: 4 X 80% EtOH, 2 X 100% EtOH, 3 X DMSO, 4 X PBS. Fixed cells were then 

blocked with 10% normal donkey serum in antibody diluent (290 mM NaCl, 7.5 mM Na2HPO4, 2.6 

mM NaH2PO4∙2H2O, 0.1% NaN3, pH 7.1) in a humidity chamber for 30 minutes followed by a 24 hour 

incubation with a goat polyclonal antibody against GLP-1 (sc-7782, Santa Cruz, 1:400). The primary 

antibody was washed three times with 1X PBS (5 minutes each) before a secondary antibody 

(donkey anti-goat IgG tagged with Cy3, Jackson Immunoresearch, 1:200) and DAPI (Sigma Aldrich, 

1:500) was added to the fixed cells and incubated in the dark. After a 2 hour incubation, cells were 

washed three times with 1X PBS (5 minutes each). The coverslips were then mounted onto glass 

slides in buffered glycerol and visualized using an upright fluorescence microscope (Olympus BX50). 

As no staining with the anti-GLP-1 antibody was observed with 12 cell preparations (Figure 2.1.1), it 

was determined that this protocol was not suitable for this primary antibody.  

 

Figure 2.1.1 A representative image of the immuocytochemical staining of GLP-1 (A), DAPI (B) and 
overlay (C). Note there is a lack of co-localization of GLP-1 and DAPI. 

An alternative immunocytochemical method was subsequently tested. Instead of Zamboni’s fixative, 

cells were fixed for 30 minutes in 4% paraformaldehyde at room temperature. The fixative was then 

aspirated and the cells washed three times with 1X PBS (5 minutes each). The cells were then 

blocked and permeabilized with a blocking buffer (5% normal donkey serum, 0.2% TritonX 100 in 1X 

PBS) for 90 minutes at room temperature. Anti-GLP-1 antibody (as above) was then diluted in 

antibody dilution buffer (2.5% normal donkey serum, 0.1% TritonX 100 in 1X PBS) and added to fixed 

cells. The cells were left in humidity chamber overnight at room temperature before they were 

washed with 1X PBS three times. Secondary antibody (as above) and DAPI was then diluted with the 

same antibody dilution buffer and added to cells. The cells were left to incubate with the secondary 

antibody in the dark for 2 hours at room temperature before excess antibody was washed three 

times with 1X PBS. The coverslips were then mounted on glass slides and visualized as described 

above. As depicted in Figure 2.1.2, L cells were detected.  
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Figure 2.1.2 Representative images of immunocytochemistry using an alternative method from two 
different field of views at 40X magnification. (A, D) GLP-1; (B, E) DAPI; (C, F) overlay. 

2.1.2.4 ELISA analysis of L cell enrichment 

While the immunocytochemical protocol was successful in detecting individual L cells, 

immunocytochemical analysis was unsuitable for determining the enrichment efficacy of the cell 

culture protocol as L cell abundance was equally low across all fractions. Therefore, cells from each 

fraction from three separate preparations were lysed with CelLytic M buffer (C2978, Sigma Aldrich), 

supplemented with a DPP4 inhibitor (DPP4-010, Merck Millipore, 1:50 as per manufacturer’s 

instruction) and the active GLP-1 content of each fraction was assayed using a commercially 

available ELISA kit (EGLP35k, Merck Millipore). Lysis experiments performed on cells obtained from 

each fraction of the Percoll gradient indicated active GLP-1 enrichment was observed at 1.0756 

g/mL, 1.06972 g/mL and 1.0638 g/mL (Figure 2.1.3). Cells in fractions F2, F3 and F4 were pooled for 

subsequent experiments.  
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Figure 2.1.3 (A) GLP-1 content of each fraction from the Percoll density gradient obtained from three 
separate cell preparations. (B) GLP-1 content of the three samples pooled for each fraction and 
normalized to the GLP-1 content of unfractionated fraction (above red line: ratio > 1 ie enrichment in 
the fraction).  

2.1.2.5 In vitro secretion experiments using enriched L cells 

Secretion studies were performed on 24-hour old cultures. 200 μL of Geltrex® (A1569601, Life 

Technologies) was added to each well of a 24-well cell culture plate using pre-cooled pipettes, left at 

37°C for one hour and at room temperature for one hour to coat the wells. Excess liquid from each 

well was then carefully aspirated immediately before cells were seeded. Up to 1x105
 cells were 

plated in each Geltrex-coated well and let to recover for 10-18 hours in 300 μL DMEM. Immediately 

before secretion experiment, culture media was removed and 250 µL of Krebs buffer containing 

various glucose concentrations, supplemented with 1:50 DPPIV-inhibitor (DPP4-010, Merck 

Millipore) and 0.1% fatty acid-free BSA, was added to each well. Cultures were incubated for 2 hours 

at 37°C, 5% CO2. At the end of the incubation, the media was removed and assayed for GLP-1 

content with ELISA. Results from the 5 mM glucose treated well were used as control for basal 

secretion in the 2 hour incubation period. At the end of each incubation, cells were lyzed using 250 

μL of DPPIV-inhibitor-supplemented Cellytic-M buffer (Sigma-Aldrich) and assayed for total active 

GLP-1 content. 

2.1.3 Results and Discussion 

2.1.3.1 Lack of glucose response of colonic mixed cell preparations 

Increasing concentrations of glucose did not evoke significant dose-related GLP-1 secretion from 

colonic L cells after incubation of two hours, in contrast to that reported in primary murine colonic 

mixed cell culture692. GLP-1 secretion with 100 mM glucose stimulation was significantly lower than 

that of 10 mM glucose stimulation (p < 0.05, One-way ANOVA with Turkey’s post-hoc comparison, 

Figure 2.1.4).  
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Figure 2.1.4 GLP-1 release in response to stimulation by increasing glucose concentrations. Data 
presented as total secreted amount as a percentage of total cell content (TCC). 

2.1.3.2 Effect of short chain fatty acids on human colonic cell preparations 

Short chain fatty acids (SCFAs), produced by bacterial fermentation of undigestible fibre, are potent 

murine L cell secretagogues in vitro710,761. Therefore, the SCFAs acetate, butyrate and propionate 

were tested for their effect on GLP-1 secretion in human colonic mixed epithelial cell culture. 

Unexpectedly, except for 1 mM acetate, all other concentrations of acetate, butyrate and 

propionate tested significantly inhibited GLP-1 secretion after 2-hour incubation, compared with 

control.  
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Figure 2.1.5 GLP-1 release from mixed colonic epithelial cell culture was significantly inhibited upon 
exposure to SCFAs stimulation. *p < 0.05, **p < 0.01, ***p < 0.001, n = 6 -12.  
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2.2 Whole tissue ex vivo secretion platform 

2.2.1 Introduction 

The lack of GLP-1 response to glucose and SCFA stimulation cast considerable doubt over the validity 

of the abovementioned primary human colonic epithelial cell culture as a suitable model for 

studying L cell secretion. Moreover, the entire isolation protocol was a low throughput process, with 

each preparation taking 8-12 hours to complete. Thus, an alternative platform that is of better 

physiological relevance was needed to study GLP-1 secretion from human L cells. A biorelease assay 

that reliably measured gut hormone release from murine and human colonic mucosal biopsies was 

described by Symonds et al.117 and I sought to adopt a similar approach to study GLP-1 secretion 

from the human colon and ileum. 

2.2.2 Methods  

Human colonic and ileal specimens were obtained after consent from patients undergoing cancer 

resection or stoma reversal at the Flinders Medical Centre and Flinders Private Hospital colorectal 

operating theatres as described previously. Mucosal tissue was obtained as intact sheets by careful 

dissection using a stainless spatula and blunt-end forceps. The mucosal layer was then cut into 5 mm 

pieces, placed in microfuge tubes filled with a customized culture medium (10X stock solution 

obtained from Ms Nicole Isaacs, University of Adelaide. Medium composition as follow (in mM): 

NaCl 122, KCl 5.9, NaHCO3 48.9, CaCl2 2.0, NaH2PO4 1, MgSO4 0.9, HEPES 27.8, D-glucose 6.1, L-

glutamine 4.4, pyruvic acid 1.1, Fe(NO3)3 275 nM, 1% BSA, pH 7.4) supplemented with a DPP4 

inhibitor, PK44 phosphatase (50 mM, 4145, Tocris) and weighed individually. The mucosal pieces 

were then transferred to a 96-well plate for static incubation at 37°C, 95% O2/5% CO2 for 2 hours. 

After incubation, supernatants were collected from each well, stored at -20°C and subsequently 

assayed for GLP-1 content.  

As the melanocortin 4 receptor (MC4R) was shown to be expressed by enteroendocrine L cells and 

its endogenous ligand, α-melanocyte-stimulating hormone (α-MSH) was shown to be an L cell 

secretagogue ex vivo in both murine and human colonic epithelia762, the peptide was used to 

stimulate GLP-1 secretion in this ex vivo biorelease platform. However, α-MSH did not significantly 

trigger GLP-1 secretion from baseline using this protocol (Figure 2.2.1). Thus, further method 

optimization was undertaken. 
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Figure 2.2.1 α-MSH did not significantly trigger GLP-1 secretion from human colonic mucosae beyond 
basal levels after a 2-hour static incubation. 

2.2.2.1 Method optimization: DPP4 inhibitor 

Since the ELISA detects only active GLP-1, the efficacy of the DPP4 inhibitor is likely to be an 

important factor that would potentially influence the outcome of the secretion experiment. 

Therefore, I compared the efficacy between two DPP4 inhibitors, PK44 and sitagliptin (gift from 

Pfizer Inc.). Colonic mucosal tissue was obtained and prepared from one colonic specimen as 

described above. 12 pieces of mucosal tissue were placed in biorelease buffer supplemented with 50 

nM PK44 and 12 were placed in buffer supplemented with 1 μM sitagliptin (IC50 = 17 nM763). Active 

GLP-1 levels were significantly higher from samples supplemented with sitagliptin (Figure 2.2.2).  
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Figure 2.2.2 Active GLP-1 levels were significantly higher in samples supplemented with 1 μM 
sitagliptin than with 50 nM PK44 phosphatase.  

Thus, sitagliptin was used instead of PK44 in subsequent experiments. 
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2.2.2.2 Method optimization: secretion assay buffer 

I next aimed to optimize the secretion assay buffer such that the colonic mucosae would release 

GLP-1 upon stimulation by known physiological stimulants. Since the tissue was not responding to 

known physiological stimulants using the biorelease assay buffer used by Symonds et al.117, I 

investigated if a modified Krebs buffer that is similar to that used for an ex vivo rat small intestine 

perfusion method733 would be more appropriate. A modified Krebs buffer with the following 

composition (in mM): NaCl 138, KCl 4.5, NaHCO3 4.2 CaCl2 2.6, MgCl2 1.2, NaH2PO4 1.2, HEPES 10, D-

glucose 5.0, 0.1% BSA, pH 7.4, was thus tested against the original biorelease assay buffer in a colon 

and an ileum specimen obtained from the same patient that had undergone right hemicolectomy, in 

which the terminal ileum was resected as part of the procedure. As glucose is a known stimulant for 

GLP-1 release from the small intestine733 and the combination IBMX and forskolin is a widely used 

positive control for GLP-1 secretion from primary colonic epithelial cell cultures620,692, they were used 

to stimulate the tissue. As illustrated in Figure 2.2.3, 300 mM glucose potently triggered GLP-1 

secretion from the ileal mucosae that was incubated in the modified Krebs buffer but not the 

biorelease assay buffer. Similarly, IBMX/FSK only triggered GLP-1 secretion from the colonic 

mucosae that was incubated in the modified Krebs buffer.  

M o d if ie d  K r e b s B io r e le a s e  a s s a y  b u f fe r

0

5

1 0

1 5

G
L

P
-1

(n
g

/
m

L
/

g
 t

is
s

u
e

)

C o n t r o l

3 0 0  m M  G lu c o s e

M o d if ie d  K r e b s B io r e le a s e  a s s a y  b u f fe r

0

1

2

3

4

5

G
L

P
-1

(n
g

/
m

L
/

g
 t

is
s

u
e

)

C o n t r o l

IB M X / F S K

A B

 

Figure 2.2.3 Comparison of the GLP-1 responses between tissue that were incubated a modified Krebs 
buffer and the original biorelease assay buffer. (A) 300 mM triggered GLP-1 secretion from ileal 
mucosae, (B) IBMX/FSK triggered GLP-1 secretion from colonic mucosae in the modified Krebs buffer 
but not in the biorelease assay buffer.  

Therefore, the modified Krebs buffer was used for subsequent experiments. 

2.2.2.3 Method optimization: Incubation time 

Results from ex vivo perfused rat small intestine studies showed glucose-733 and α-MSH762 stimulated 

GLP-1 secretion occurs only transiently and that stimulatory effects were not sustained throughout 

the duration of the time in which the intestine was exposed to the stimulants. Therefore, mucosal 

pieces obtained from one colonic specimen were stimulated by a range of stimuli for different 

durations (30 minutes, 60 minutes and 120 minutes). In the hope of better capturing the stimulatory 

effect of MC4R activation, a more potent analogue of α-MSH, NDP-α-MSH was also used to 
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stimulate GLP-1 release. In addition, IBMX and forskolin were used in combination to serve as a 

positive control at concentrations previously described620,692. As depicted in Figure 2.2.4, GLP-1 

release was above basal levels after 30 minute incubation with most stimuli tested and this 

stimulatory effect was not observed with longer incubation times. Thus, it was determined that 

shorter incubation time was crucial for capturing stimulatory effects on GLP-1 release. 
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Figure 2.2.4 30 minute incubation was best to capture stimulated GLP-1 release. (Dots above bars 
indicate levels of GLP-1 were above basal levels; dashed lines indicate basal GLP-1 release during 
their corresponding incubation time) 

I next sought to determine if the stimulatory effect of IBMX/FSK after 30-minute incubation could be 

reliably repeated and whether the stimulatory effect could be detected at even earlier time point. 

Indeed, IBMX/FSK significantly triggered GLP-1 secretion from colonic mucosae after 15-minute and 

30-minute incubation. However, no stimulatory effects were detected after 5-minute incubation 

(Figure 2.2.5). 
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Figure 2.2.5 The stimulatory effect of IBMX/FSK on GLP-1 secretion from human colonic epithelia 
after (A) 5 minutes (n = 3), (B) 15 minutes (n = 4), (C) 30 minutes (n = 4). **p < 0.01, paired-ratio t-
test. 

Therefore, 15-minute incubation time was chosen for subsequent secretion experiments.  

2.2.3 Results and Conclusion 

Finally, to validate the optimized whole tissue ex vivo secretion platform, known L cell secretagogues 

were used to stimulate GLP-1 release from human colonic mucosae. The bile acid, taurodeoxycholic 

acid (TDCA, 100 μM) is a potent stimulant of GLP-1 release in vitro from primary mixed colonic 

epithelial cell culture and ex vivo from perfused rat small intestine186. Thus, TDCA, alongside the 

combination of 10 μM of IBMX and forskolin, and a SCFA cocktail (acetate 5 mM, butyrate 1 mM, 

propionate 1 mM) were used to stimulate GLP-1 secretion from human colonic mucosae, using a 

modified Krebs buffer supplemented with 1 μM sitagliptin and incubated for 15 minutes. All three 

stimuli significantly triggered GLP-1 secretion from the tested tissue samples (Figure 2.2.6). 
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Figure 2.2.6 Human colon GLP-1 secretory response to known L cell secretagogues. *p < 0.05, **p < 
0.01, one-way ANOVA with Fisher’s LSD test for comparisons between treatments.  

The above results demonstrated that with these optimized conditions established in this chapter, 

the whole tissue ex vivo secretion assay is a suitable platform to study secretory responses of L cells 

upon exposure to different stimulants. 

  



 

57 
 

3 GLP-1 and PYY responses in human ex vivo gut 

tissue to known L cell secretagogues 

3.1 Mechanisms controlling glucose-induced GLP-1 secretion in 

human small intestine. 

3.1.1 Introduction 

As discussed in detail in previous chapters, GLP-1 is secreted by enteroendocrine L cells 

postprandially to potently enhance glucose-induced insulin release from pancreatic β-cells. Together 

with the other incretin hormone, GIP, it is estimated the incretins are responsible to 50 – 70 % of 

insulin secretion following oral glucose administration in healthy individuals68. In addition to its 

insulinotropic effect, GLP-1 is trophic to β cells764 and confers glucose-sensitivity to glucose-resistant 

β cells765. Moreover, GLP-1 exerts potent inhibitory effects on glucagon secretion to suppress hepatic 

glucose output220,322,766. The extensive use of GLP-1-based anti-diabetic agents, namely DPP4 

inhibitors and GLP-1 receptor agonists (GLP-1RAs) highlights the important role of GLP-1 in 

maintaining glucose homeostasis. In addition, the GLP-1RA liraglutide is efficacious in weight 

management389, likely through central actions, and has recently been approved as an anti-obesity 

agent. Furthermore, there is increasing acceptance the metabolic benefits of gastric bypass surgeries 

are partly attributed to significantly elevated GLP-1 levels in patients after surgeries314.  

L cells are predominantly located in the epithelia of the distal small intestine and colon; although 

there are also a substantial population of L cells dispersed along the duodenum251. These proximal 

populations are likely to be responsible for the early phase of GLP-1 secretion upon meal ingestion. 

Luminal nutrient exposure to L cells in the intestinal epithelium is a potent stimulant for GLP-1 

release and the underlying mechanisms of nutrient-sensing have been investigated in an array of 

experimental models767. The availability of fluorescent protein-tagged L cells generated from 

transgenic mice692 has been instrumental in broadening our understanding of basic L cell physiology. 

In addition, the development of the rat small intestine perfusion model733 has enabled the study of L 

cell secretion in a setting that closely resembles its native physiological environment. Based on 

studies by others using primary murine intestinal mixed cell cultures660,692,768, transgenic mouse 

model in vivo769 and an ex vivo rat model733, glucose-induced GLP-1 release by L cells in the small 

intestine is thought to be primarily mediated by the sodium glucose co-transporter SGLT1 and to a 

lesser extent, glucose transporter GLUT2. Intracellular glucose metabolism upon glucose 

internalization and the subsequent closure of KATP channels are also shown to be pivotal. In addition, 
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sweet taste receptor signalling has also been shown to be involved in glucose-induced GLP-1 

release697,770. 

However, fundamental species differences may hinder the translation of experimental results from 

these in vitro and in vivo rodent models to human in vivo; similar mechanistic examinations in 

human L cells are lacking. In this study, the mechanisms controlling glucose-induced GLP-1 release in 

human gut tissue were examined. Through the use of an ex vivo static secretion model in human gut 

intestinal mucosa, I demonstrated that glucose potently triggered GLP-1 release in duodenal, ileal, 

but not colonic, mucosae at concentrations equivalent to postprandial luminal, but not plasma, 

glucose levels.  

3.1.2 Methods  

3.1.2.1 Human tissue collection 

For ex vivo secretion experiments, patients gave consent for tissue donation from resected terminal 

ileum and colon at Flinders Medical Centre and Flinders Private Hospital approved by the Southern 

Adelaide Clinical Human Research Ethics Committee. Ileal and colonic tissue specimens were 

collected from patients undergoing bowel resection for cancer or stoma reversal. In the case of 

resection specimens, samples were obtained from sites at least 10 centimetres away from the 

tumour location. Specimens from patients that were indicative of any form of inflammatory bowel 

disease were excluded from this study. Characteristics of the patient cohort are listed in Table 3.1. 

The specimens were immediately placed in iced-cold Krebs buffer (in mM, NaCl 138, KCl 4.5, CaCl2 

2.6, NaHCO3 4.2, MgCl2 1.2, NaH2PO4 1.2, HEPES 10, Glucose 5) and transported to the laboratory for 

dissection within 15 minutes. The specimens were rinsed with iced-cold Krebs buffer to remove any 

luminal content and dissected clear of adipose, muscular and connective tissue. The mucosae were 

gently dissected off from the submucosae as intact sheets using a stainless steel spatula, cut into 5 

mm pieces and weighed individually. The mucosal pieces were then transferred to a 96-well plate for 

secretion assays. 

 
Ileum specimen Colon specimen 

N 36 24 

Age  71 ± 2  65 ± 2  

Sex  15M : 11F 13M : 11F 

BMI (kg/m2) 29 ± 1 29 ± 1  

History of T2D (yes/no) 6/ 30 7/ 17 

Table 3.1 Characteristics of specimen donors for ex vivo experiments. BMI – body mass index, T2D – 
type 2 diabetes, M – male, F – female. Data are mean ± SEM. 
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3.1.2.2 Secretion experiments 

Mucosal pieces were incubated with 250μL of buffer (control) or buffer containing test agents in a 

96-well plate for 15 minutes. The buffer was a modified Krebs buffer as previously described in 

chapter 2, with the addition of sitagliptin 1 μM, 0.1% BSA (A1595, Sigma Aldrich) at pH 7.4. Following 

incubation at 37°C in 95%O2/5%CO2, supernatants were collected and stored in aliquots at -20oC. 

Active GLP-1 levels were quantitated using a commercially available ELISA kit, according to 

manufacturer’s instructions (EGLP-35K, Merck Millipore).  

3.1.2.3 Materials 

The following compounds were purchased from Sigma Aldrich: Diazoxide (D9035), Tolbutamide 

(T0891), 2,4-dinitrophenol (2,4-DNP) (D198501), Nifedipine (N7634), Lignocaine (L7737), Phlorizin 

(P3449), Phloretin (P7912), methyl α-D-glucopyranoside (α-MG) (M9376), sucralose (69293), D-

Mannitol (M4125). To aid solubility, diazoxide, tolbutamide, 2,4-DNP, nifedipine, lignocaine, 

phlorizin and phloretin were first dissolved in DMSO and then diluted further in Krebs buffer, with 

DMSO concentrations never exceeding final concentration of 0.1%.  

3.1.2.4 Statistical analysis 

All statistical analysis was conducted as paired analyses, comparing responses in tissues obtained 

from the same individual. A paired-ratio Student’s t-test was used for single comparisons and a 

paired one-way ANOVA with Fishers Least Significant Difference post-hoc test used for multiple 

comparisons. Statistical significance was p < 0.05. All data are shown as mean ± SEM.  

3.1.3 Results 

3.1.3.1 Glucose triggers GLP-1 release in the ileum but not in the colon  

I established a dose-response relationship of glucose-induced GLP-1 secretion from ileal epithelial 

tissue; release was only triggered above 200 mM. 300 mM gave the highest GLP-1 secretion of the 

glucose concentrations tested (Figure 3.1.1.A). In contrast to the robust glucose responsiveness in 

the ileum, GLP-1 secretion from human colonic mucosal tissue did not increase in response to high 

glucose stimulation (Figure 3.1.1.B). 
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Figure 3.1.1 (A) Concentration-response curve for GLP-1 secretion in response to increasing glucose in 
human ileum tissue, glucose potently triggered GLP-1 release from the human ileum but at 200 - 300 
mM but not a lower concentrations, n = 5; **p < 0.05, ***p < 0.01. (B) 300 mM glucose significantly 
increased GLP-1 secretion from the human ileum (n = 21) but not colon (n = 24), ****p < 0.0001. 

3.1.3.2 High glucose-induced GLP-1 secretion from the ileum was not due to osmotic stress 

300 mM D-mannitol did not increase GLP-1 release (Figure 3.1.2), which indicates osmotic stress did 

not drive the observed response to glucose.  
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Figure 3.1.2 300 mM glucose significantly increased GLP-1 secretion from human ileum but 300 mM 
D-mannitol did not cause significant release (n = 8, **p < 0.01). 

3.1.3.3 Glucose-induced GLP-1 secretion from the ileum did not change with diabetic 

status 

I observed no changes in basal (5 mM glucose), or stimulated (300 mM glucose) GLP-1 release, or 

magnitude of stimulation, between specimens from non-diabetic (ND) and type 2 diabetic (T2D) 

donors (Figure 3.1.3). Similarly, the above measures were not correlated to the BMI of specimen 

donors.  
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Figure 3.1.3 (A, B) Type 2 diabetes did not affect basal and stimulated GLP-1 release from human 
ileal preparations (ND: n = 30, T2D: n = 6). (C-E) BMI of specimen donors did not affect basal (C) and 
high glucose-stimulated (D) GLP-1 release (n = 36). 

3.1.3.4 Mechanism regulating glucose-induced GLP-1 secretion 

High glucose-induced GLP1 secretion was inhibited by the presence of 1 mM phlorizin, an inhibitor 

of the sodium glucose co-transporter SGLT1. The non-metabolizable SGLT1 substrate, α-MG, also 

induced GLP-1 secretion from basal levels, albeit to a lesser extent than equimolar glucose, and the 

stimulatory effects of α-MG was abolished by 1 mM phlorizin. Blockade of the passive glucose 

transporter, GLUT2, with 1 mM phloretin, attenuated high glucose-stimulated GLP-1 secretion 

(Figure 3.1.4.A).  Glucose-stimulated GLP-1 secretion was completely abolished when extracellular 

sodium was substituted with equimolar NMDG (Figure 3.1.4.B), which indicates Na+ is pivotal for 

glucose-induced GLP-1 secretion. The KATP channel opener, diazoxide and the proton ionophore, 2,4-

DNP both abolished glucose-induced GLP-1 secretion. The KATP channel antagonist tolbutamide did 

not stimulate GLP-1 release (Figure 3.1.4.C). The voltage-gated Na+ channel blocker, lignocaine and 

L-type Ca2+ channel blocker, nifedipine, both attenuated glucose-induced GLP-1 secretion (Figure 

3.1.4.D). The non-caloric sweetener, sucralose, stimulated GLP-1 release, indicating a role for STRs in 

GLP-1 secretion. The STR antagonist, lactisole, did not affect glucose-induced GLP-1 secretion, 

indicating glucose-induced GLP-1 secretion is independent of this pathway (Figure 3.1.4.E). 
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Figure 3.1.4 (A) Phlorizin potently suppressed high glucose-induced GLP-1 secretion (n = 8). 300 mM 
of the SGLT1 substrate, α-MG significantly increased GLP-1 secretion from basal but to a lesser extent 
than 300 mM glucose and its stimulatory effect is sensitive to the blockade of SGLT1 by phlorizin (n = 
8; *p < 0.05, **p < 0.01). The GLUT2 inhibitor, phloretin, abolished high glucose-induced GLP-1 
secretion from human ileum; (B) Replacing extracellular Na+ with equimolar NMDG completely 
abolished high glucose-induced GLP-1 secretion (n = 5); (C) Glucose-induced GLP-1 secretion was 
attenuated by 500 μM Diazoxide and 100 μM 2,4-DNP (n = 8) while closure of KATP channels with 
500 μM tolbutamide did not trigger significant GLP-1 release from basal levels (n = 8); (D) 100 μM 
lignocaine and 10 μM lignocaine both attenuated glucose-induced GLP-1 secretion (n = 8). (E) 5 mM 
sucralose alone significantly induced GLP-1 secretion but to a significantly lesser extent to 300 mM 
glucose (n = 8) while 10 mM of the sweet taste receptor blocker, lactisole, did not significantly 
attenuate high glucose-induced GLP-1 secretion from the human ileum (n = 8). *p < 0.05, **p < 0.01, 
****p < 0.0001. 

3.1.4 Discussion and Conclusion 

In this study, I established that glucose concentrations equivalent to postprandial intraluminal, but 

not plasma levels, were capable of triggering GLP-1 secretion from human ileum ex vivo, but not 

colon. Moreover, I identified the mechanisms underlying this glucose response in human ileal L cells 

and showed SGLT1 is central to this pathway.  

The current ex vivo model demonstrates that exposure of human ileal mucosa to glucose triggers 

GLP-1 secretion, independent of neural inputs, gut contractions and osmotic stress. While I was 



 

63 
 

unable to acquire total GLP-1 content from the current samples to observe potential differences in 

type 2 diabetes patients, secretion was similar in both groups, enabling me to pool the ex vivo data 

from all patients. I showed that, similar to the glucose response in perfused rat small intestines; 

luminal, but not vascular, infusions of high glucose triggered substantial GLP-1 secretion733. This is in 

contrast to the results from recent reports showing colonic enterochromaffin cells are glucose-

sensitive115,127. While the result in colon contrasts that from murine colonic mixed cell culture660,692, it 

does support clinical findings that glucose-induced GLP-1 secretion is not affected by colon 

resection, and that rectally administered glucose did not trigger GLP-1 release771.  

This study defined pivotal roles of electrogenic and facilitative glucose transport via SGLT1 and 

GLUT2, respectively, in GLP-1 release from the human ileum. The significant GLP-1 release triggered 

by equimolar amounts of the non-metabolizable SGLT1 substrate, α-MG, reversal of α-MG-induced 

GLP-1 release by phlorizin and blockade of glucose response by substituting external Na+ with 

NMDG, all support a central role of SGLT1 in driving this glucose response733,772. Thus, the present 

results confirm the critical role of electrogenic sodium-dependent glucose uptake by SGLT1 in 

causing membrane depolarization and subsequent GLP-1 release in human L cells, similar to that 

shown in rodent models660,733,768,769,772. GLUT2 blockade by phloretin also attenuated glucose-

stimulated GLP-1 secretion. Although this is also observed in perfused rat small intestines733,773, it 

may be a species-specific pathway; GLUT2 activity was not implicated in glucose-induced GLP-1 

secretion in mouse models660,769. GLUT2 may be important in human L cells by facilitating glycolytic 

and/or mitochondrial metabolism for metabolism-dependent, KATP channel-independent, glucose-

induced GLP-1 release can occur, as it is implicated in mediating KATP channel-independent GLP-1 

secretion by other secretagogues including lipids and bile acids773. 

It has been proposed that glucose induces GLP-1 release through glucose internalization, ATP 

production via oxidative phosphorylation to close KATP channels, and subsequent membrane 

depolarization767. In this study, I demonstrate that the KATP channel opener, diazoxide, potently 

reduced glucose-induced GLP-1 secretion in humans, consistent with in vitro692,709 and ex vivo733 

rodent data. Inhibiting intracellular ATP synthesis with 2,4-DNP abolished glucose-induced GLP-1 

secretion in human ileum, consistent with results in rat small intestine733. Tolbutamide did not 

increase GLP-1 secretion in this present model, in contrast to that same study and other in vitro 

experiments692, but is consistent with in vivo findings that sulfonylureas do not trigger GLP-1 

secretion in humans774,775. Diazoxide increases K+ permeability and subsequently clamps membrane 

potential below the K+ equilibrium potential. This hyperpolarization must override any membrane 

depolarization induced by the inward Na+ current associated with SGLT1 activity.  
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Na+-dependent action potentials and voltage gated L-type Ca2+ currents are implicated in mediating 

basal and stimulated GLP-1 release in murine L cells in vitro709. My study supports the role of both 

channels in glucose-induced GLP-1 release from the human ileum. Blockade of voltage-gated Na+ 

channels after intravenous lignocaine administration failed to attenuate glucose-induced GLP-1 

secretion from rat small intestine733. Such differing results may highlight a shortcoming of the 

current approach as cell polarisation is lost in this model, rendering us unable to differentiate 

between apical and basolateral pathways. Future experiments using human vascularly perfused 

tissue, or using Ussing chambers, could mitigate these shortcomings.  

Intestinal sweet taste receptors have recently emerged as an important regulator of gut hormone 

secretion. Reimann et al. showed that GLP-1 secretion from primary murine small intestine mixed 

cell cultures increased upon exposure to the artificial sweetener, sucralose692. 

Immunohistochemistry showed that GLP-1 co-localizes with the sweet taste receptor T1R3 and its 

coupling protein α-gustducin in human small intestine and the sweet taste receptor antagonist, 

lactisole, markedly reduced glucose-stimulated GLP-1 release in humans in vivo770. Thus, I 

investigated the effect of the artificial sweetener sucralose on GLP-1 secretion. In contrast to 

negative results in a clinical study776 and that from rat a ex vivo perfusion model733, I observed a 

modest but significant increase of GLP-1 secretion from human ileal mucosae upon exposure of the 

sweetener alone. However, further interrogation of this pathway was unsuccessful as inhibition of 

sweet taste receptor signalling did not significantly reduced glucose-stimulated GLP-1 secretion. The 

considerable variance in the lactisole-treatment group may have prevented us from detecting any 

inhibitory action of the drug on glucose-induced GLP-1 secretion. It is also possible that sucralose is a 

more potent activator of the STRs at this dose, or that a small portion, if any, of the glucose-

stimulated GLP-1 secretion is mediated by this pathway692,733,770,776. 

Not all pathways shown to govern GLP-1 secretion in rodents were implicated in this study, 

highlighting the importance of species differences in studying L cell physiology. One of the notable 

differences was the inability for high glucose to invoke GLP-1 secretion in human colon mucosae in 

this study, contrasting findings in mice in vitro692 and rat colon ex vivo777. One of the major 

limitations of the current study was the inability to differentiate between apical and basolateral 

effect of the reagents tested. Nonetheless, this study clearly demonstrated that glucose-induced 

GLP-1 secretion in human ileum is mediated by the electrogenic activity of SGLT1. It additionally 

involves a component reliant on intracellular glucose metabolism and is dependent on voltage-gated 

Na+
 and Ca2+ channels. 
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3.2 Metformin directly triggers GLP-1 and PYY secretion in human 

colon and ileum 

3.2.1 Introduction 

For more than half a century, the biguanide, Metformin, has been the first-line treatment of type 2 

diabetes due to its low cost, proven efficacy and positive side effect profile. Despite wide use, its 

exact mechanisms of action are still a subject of ongoing investigation778. Metformin decreases 

hepatic gluconeogenesis and improves peripheral insulin sensitivity779 through activation of 5’ AMP-

activated protein kinase (AMPK) in metabolically active organs including the liver780, skeletal 

muscles781 and adipose tissue782. The weight-neutral or in many cases, modest weight-reducing 

effect associated with metformin use was recognized soon after it was first used as an efficacious 

anti-diabetic agent783 but the underlying mechanism was unclear. There is an increasing uptake of 

metformin in various subgroups of non-diabetic patients; metformin was recently shown to 

decrease maternal weight gain in obese pregnant women without type 2 diabetes784 and is 

increasingly used in women with Polycystic Ovarian Syndrome (PCOS)785, in which modest weight 

loss is commonly achieved786. Furthermore, there are ongoing investigations to explore metformin’s 

place as an adjunct therapy to reduce weight gain secondary to atypical antipsychotic treatments787-

789. 

A more recently appreciated mechanism of action of metformin is focused on the GI tract778,790. This 

view is supported by reports that showed the effect of metformin on hepatic glucose production is 

observed with oral, but not parental administration of the drug778,790-792. This is further supported by 

trials that both extended- and delayed-release formulations of metformin have more potent effects 

in type 2 diabetes patients on lowering fasting blood glucose levels than immediate release 

formulations of equivalent doses, without increasing the incidence of adverse effects793,794. Such 

data associates the prolonged exposure of the GI tract to metformin with improved efficacy of the 

drug. Interestingly, delayed-release formulation of metformin was shown to be superior in lowering 

fasting blood glucose level (BGL) over the extended-release formulation in a randomized controlled 

trial, further strengthening this association795.  

In rodents662,796 , acute metformin treatment activates L cell secretion and increases plasma GLP-1 

without affecting DPP4 activity. Additionally, clinical studies report the positive effect of chronic 

metformin treatment in type 2 diabetes patients on fasting and post-prandial GLP-1 and PYY 

levels794,797. An early clinical study showed that three days of metformin treatment in healthy normal 

weight females was sufficient to significantly increase fasting PYY level and that six months of 

metformin treatment in overweight women with PCOS elevated fasting PYY levels by 50 % in more 
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than half the participants798. Later studies confirmed chronic metformin treatment is associated with 

elevated fasting and postprandial levels of PYY799,800. However, evidence supporting a direct effect of 

metformin on human L cells is lacking. To ascertain whether a direct effect on L cell secretion exists, 

ex vivo mucosal tissue sections could be used so as to remove any potential confounding effects 

from factors such as bile acids, gut contraction, extrinsic and intrinsic nervous input or the 

microbiome. Sufficiently large amounts of human mucosal to undertake such secretion experiments 

are most readily acquired through surgical tissue specimens.  

The aim of this study was to determine if metformin directly triggers the release of GLP-1 and PYY 

from human L cells in an ex vivo tissue model. We demonstrate that metformin causes acute release 

of GLP-1 and PYY in human gut mucosa via transport through PMAT and SERT and activation of 

AMPK. This is the first evidence supporting a direct action of metformin to trigger GLP-1 and PYY 

release from human L cells. The co-release of these two gut peptides may, in part, explain the anti-

diabetic and weight loss effects of metformin. 

3.2.2 Methods 

3.2.2.1 Human tissue collection: 

Patients gave consent for tissue donation from resected small and large intestine at Flinders Medical 

Centre and Flinders Private Hospital approved by the Southern Adelaide Clinical Human Research 

Ethics Committee. Ileum and colon tissue specimens were collected from patients undergoing bowel 

resection for cancer or stoma reversal. In the case of resection specimens, samples were obtained 

from sites at least 10 centimetres away from the tumour location. Specimens from patients that 

were indicated for any form of inflammatory bowel disease were excluded from this study. 

Characteristics of the patient cohort are listed in Table 3.2. The specimens were immediately placed 

in iced-cold Krebs buffer (in mM, NaCl 138, KCl 4.5, CaCl2 2.6, NaHCO3 4.2, MgCl2 1.2, NaH2PO4 1.2, 

HEPES 10, Glucose 5) and transported to the laboratory for dissection within 15 minutes. The 

specimens were rinsed with iced-cold Krebs buffer to remove any luminal content and dissected 

clear of adipose, muscular and connective tissue. The mucosae were gently dissected off from the 

submucosae as intact sheets using a stainless steel spatula, cut into 5 mm pieces and weighed 

individually. The mucosal pieces were then transferred to a 96-well plate for secretion assays. 
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Colon specimen Ileum specimen 

N 46 10 

Age (years) 67 ± 13 (38 - 87) 70 ± 10 (52 - 83) 

Sex (male/female) 25/ 22 3/ 7 

BMI (kg/m2) 29.3 ± 6.7 (19 - 55) 31.6 ± 6.3 (25 - 45) 

History of type 2 diabetes (yes/no) 11/ 35 3/ 7 

Metformin-treated (yes/no) 6/ 40 2/ 8 

Table 3.2 Characteristics of the specimen donors (data is average ± SEM and range in parentheses) 

3.2.2.2 Secretion experiments: 

Mucosal pieces were incubated with 250μL of buffer (control) or buffer containing test agents in a 

96-well plate for 15 minutes. The buffer was a modified Krebs buffer described previously with the 

addition of sitagliptin 1 μM, 0.1% BSA  (A1595, Sigma Aldrich) at pH 7.4. Following incubation at 37°C 

in 95%O2/5%CO2, supernatants were collected and stored in aliquots at -20 oC. Active GLP-1 and 

total PYY levels were quantitated using commercially available ELISA kits, according to 

manufacturer’s instructions (EGLP-35K & EZHPYYT66K, Merck Millipore).  

3.2.2.3 Test agents: 

3-isobutyl-1-methylxanthine (IBMX) and forskolin (I5879 & F6886, Sigma Aldrich) (10 μM each) and 

70 mM KCl were used as positive controls. For the 70 mM KCl solution, an equimolar amount of NaCl 

was removed to maintain osmolarity. The following compounds were purchased from Sigma Aldrich: 

Metformin (PHR1084), Lopinavir (SML1222), Quinine hydrochloride dehydrate (Q1125), Fluoxetine 

(F132). The AMPK inhibitor, dorsomorphin was from Merck Millipore (171260). Only samples that 

show positive response to at least one positive control (70 mM KCl or 10 μM IBMX/FSK) were 

included in analysis.   

3.2.2.4 Statistical analysis: 

All statistical analysis was conducted as paired analyses, comparing responses in tissues obtained 

from the same individual. A paired Student’s t-test was used for single comparisons and a paired 

one-way ANOVA with Fishers Least Significant Difference post-hoc test used for multiple 

comparisons. Statistical significance was p < 0.05. All data are shown as mean ± SEM. 

3.2.3 Results 

3.2.3.1 Metformin triggers GLP-1 and PYY secretion 

Exposure to  high external K+ or to a combination of known activators of L cell secretion forskolin and 

IBMX increased intact GLP-1 release from colonic epithelial tissue by 1.79 fold and 3.01 fold, 
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respectively (n= 22, p < 0.001, Figure 3.2.1.A). Acute exposure to metformin (10 µM) also triggered 

an increase in intact GLP-1 levels in supernatant by 3.95 fold (n = 46, p < 0.01, Figure 3.2.1.B). A 

similar increase in GLP-1 release in response to metformin in ileal tissue by 4.1 fold was observed (n 

= 10, p < 0.05, Figure 3.2.1.C). PYY was also reliably released in the presence of known L cell 

secretogogues; high external K+ and FSK/IBMX increased PYY release by 2.13  and 1.82 fold 

respectively (n = 22, p < 0.001, Figure 3.2.1.D). Acute metformin exposure triggered PYY release in 

colonic (n = 46, p < 0.001, Figure 3.2.1.E) and ileal (n = 10, p < 0.05, Figure 3.2.1.F) tissue by 1.67 and 

2.01 fold respectively. Thus, metformin increases GLP-1 and PYY release within 15 minutes from 

human colonic and ileal L cells.  

 

Figure 3.2.1 Metformin-induced secretion in human L cells. (A) Colonic epithelial preparations readily 
secrete GLP-1 in response to high (70 mM) external K+ or to a combination of IBMX and forskolin (n = 
22). Metformin (10 µM) increases GLP-1 release after 15 minutes in epithelial tissue from human (B) 
colon (n = 46) and (C) ileum (n = 10). D-F are the same as A-C but represent PYY release. Bar graph 
data are mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001 compared to respective control groups. 

3.2.3.2 Metformin-induced L cell secretion is unrelated to BMI or diabetes status 

To identify whether the effect of metformin on L cell secretion was altered in human obesity or type 

2 diabetes, I examined responses to metformin in our colonic preparation across BMI and in samples 

obtained from patients with type 2 diabetes. Neither the basal release of GLP-1 (Figure 3.2.2.A), nor 
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the degree of metformin-stimulated GLP-1 released (Figure 3.2.2.B), correlated with BMI (n = 46). No 

difference was seen in either basal (Figure 3.2.2.C) or stimulated GLP-1 release (Figure 3.2.2.D) 

between tissue obtained from non-diabetes (n = 35) or type 2 diabetes individuals (n = 11). The same 

result was observed when similarly stratifying this data for PYY release (Figure 3.2.2.E-H). Thus, basal 

L cell secretion, and the response of L cells to metformin, do not change across BMI and are 

unrelated to diabetic status.

 

Figure 3.2.2 Metformin-induced colonic L cell secretion does not change in obesity or diabetes. (A) No 
correlation exists between BMI and (A) basal and (B) stimulated GLP-1 release (n = 46). (C) Basal and 
(D) stimulated GLP-1 release are similar in samples from non-diabetes (ND, n = 35) and type 2 
diabetes (T2D, n = 11) patient samples. E-H are the same as A-D but represent PYY release. Bar graph 
data are mean ± SEM, ns indicates no significant correlation. 

3.2.3.3 Metformin is transported into L cells and activates AMPK 

I investigated the mechanism by which metformin triggers L cell secretion. AMP kinase has been 

associated with metformin action780, and inhibiting AMPK activity using 10 μM dorsomorphin 

blocked metformin-induced PYY and GLP-1 secretion ( Figure 3.2.3.A and C). I then used a series of 

membrane transporter antagonists to identify the mechanism of metformin internalisation in human 

colonic L cells. Quinine (Organic Cation Transporter 1 (OCT1) inhibitor) had no effect on metformin-

induced PYY release, while lopinavir (Plasma membrane monoamine transporter (PMAT) inhibitor) 

and fluoxetine (serotonin transporter (SERT) inhibitor) both blocked metformin-induced PYY release 

(Figure 3.2.3.B). Metformin-induced GLP-1 release is blocked by fluoxetine but not quinine or 

lopinavir (Figure 3.2.3.D).  
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Figure 3.2.3 Mechanisms controlling metformin-induced secretion in human colonic L cells. The AMPK 
inhibitor dorsomorphin blocks metformin-induced PYY (A, n = 20) and GLP-1 (C, n = 18) release. (B) 
Metformin-induced PYY release is blocked by the PMAT inhibitor lopinavir and the SERT inhibitor 
fluoxetine (n = 18). (D) Metformin-induced GLP-1 release is blocked by the serotonin transporter 
(SERT) inhibitor fluoxetine (n = 18). Bar graph data are mean ± SEM, **p < 0.01, ***p < 0.001 
compared to respective control conditions, ns indicates no significant effect compared to controls. 

3.2.4 Discussion and Conclusion 

This is the first report of metformin directly triggering GLP-1 and PYY release from L cells within 

human intestinal epithelium, and the mechanisms by which it occurs. Others have previously shown 

that chronic oral metformin treatment increases fasting and post-prandial plasma GLP-1 and PYY 
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levels in humans794,797-799,801 and that acute oral administration of the drug in mice increases plasma 

GLP-1 in the absence of glucose administration802. However, these previous studies did not exclude 

the potential effects of metformin administration on the autonomic and enteric nervous systems or 

blood borne factors that influence GLP-1 and PYY actions, such as DPP4. Nonetheless, one of the 

major limitations to my experimental setup is the inability to exclude the possibility that metformin 

could act on absorptive enterocytes or other enteroendocrine cells to trigger L cell secretion in a 

paracrine fashion. 

The oral bioavailability of metformin is approximately 50 % with an estimated 30 % of an ingested 

dose recoverable in faeces803. This incomplete absorption means the lower intestine, the body’s 

richest source of GLP-1 and PYY, is exposed to a considerable portion of an oral metformin dose. 

Considering the importance of GLP-1 and PYY in maintaining energy homeostasis69,804, results from 

this study could serve to explain why delayed release formulations of metformin have a more potent 

glucose-lowering effect than immediate and extended release formulations of equivalent doses, 

albeit achieving lower plasma concentrations of metformin when compared with these 

formulations794,795. Since higher plasma metformin levels are associated with increased incidence of 

lactic acidosis, a rare but severe adverse drug reaction associated with metformin use805, the use of 

delayed release formulations can therefore minimize systemic exposure to metformin but maintain 

a comparable, if not superior, anti-diabetic effect. In addition, there were no differences in 

metformin-induced GLP-1 or PYY release between control and type 2 diabetes patients and no 

relationship was evident between release and BMI, indicating the potency of metformin to trigger 

GLP-1 and PYY release is preserved in obese patients and in patients with type 2 diabetes. Given the 

incretin effect elicited by GLP-1 is preserved in type 2 diabetes patients806, results from this study 

provide additional mechanistic explanation for the efficacy of metformin in lowering blood glucose 

levels in type 2 diabetes patients.  

It is widely accepted that metformin improves peripheral insulin sensitivity and activates AMPK in 

the liver780, skeletal muscles781 and adipose tissue782, all of which contribute to its hypoglycaemic 

effect. Therefore, I hypothesized that a gut-based anti-diabetic mechanism would also require AMPK 

activation. This hypothesis was supported in this current study, given that inhibition of AMPK by 

dorsomorphin significantly attenuated the metformin response. This is consistent with acute AMPK 

activation being sufficient to cause GLP-1 release in vivo in rats796. Based on the current knowledge 

of the membrane transporters involved in intestinal uptake of metformin807 and that genetic 

variations in OCT1808,809 and SERT810 are associated with variations in therapeutic response and GI 

adverse reactions to the drug, I also hypothesized that metformin’s stimulatory effect depends on 

active transport of the drug into the cell. In line with this hypothesis, I observed the attenuation of 
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the stimulatory effect of metformin on colonic GLP-1 and PYY secretion by pre-treatment with PMAT 

and SERT inhibitors lopinavir and fluoxetine, respectively. However, the possibility of an indirect 

stimulatory effect of metformin on L cells via paracrine actions should not be discounted, especially 

considering the lack of direct stimulatory effect of metformin on several in vitro L cell models 

including NCI-H716 cells796. It is possible that metformin causes serotonin release from local 

enterochromaffin cells109,119 and transportation of 5-HT into L cells activating release should not be 

discounted, although this seems less likely however given the major signaling pathways of serotonin 

involve binding to and activation of plasma membrane serotonin receptors.796 Despite the link 

between OCT1 polymorphisms and metformin response808,809, there were no changes to metformin 

response in the presence of the OCT1 inhibitor, quinine, suggesting OCT1 polymorphisms may affect 

metformin response through alternate mechanisms.  

Despite the increasing appreciation for the role of the gut plays in mediating the anti-diabetic effects 

of metformin, it is important to acknowledge that the biguanide exerts an array of effects on 

different metabolically important organs. Such effects help to explain its long-held place as first-line 

therapy in treating type 2 diabetes. It is accepted that metformin potently suppresses hepatic 

glucose output792, possibly through a hepatic AMPK-dependent pathway780, by activating duodenal 

AMPK811, or by suppressing hepatic glucagon signalling812. Interestingly, the current findings may also 

serve to explain metformin’s suppressing effect on hepatic glucose output since GLP-1 is a known 

potent inhibitor of hepatic gluconeogenesis69. Although metformin’s actions on other metabolically 

active organs could contribute to its weight loss effects, it is likely that weight-reducing effect of 

metformin is at least partly mediated by increased release of PYY, which then acts centrally on the 

hypothalamic feeding circuit to induce satiety and reduce food intake. Although this hypothesis has 

not yet been directly tested, Kim et al. showed that oral metformin administration in mice caused 

significant increase in c-Fos immunoreactivity within the brainstem NTS neurons of obese813, which 

is an important target for peripherally administered PYY3-36 to reduce food intake in mice814. It would 

be informative to investigate if metformin-induced weight loss and reduced food intake are 

attenuated in Pyy knockout mice. It is worth noting that metformin has been shown to attenuate the 

release of the orexigenic gut hormone, ghrelin from primary rat gastric cell culture in an AMPK-

dependent fashion815. Thus, metformin may well have opposite effect on the secretion on the 

anorectic PYY and orexigenic ghrelin to synergistically reduce food intake. Increased food intake is 

believed to be one of the major reasons why many patients gain significant amount of bodyweight 

as a result of atypical antipsychotic treatments816,817, metformin’s direct stimulatory effect of PYY 

secretion can therefore explain why it is an efficacious option in limiting atypical antipsychotic-

induced weight gain787-789.  
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In summary, I have provided direct evidence that metformin elicits GLP-1 and PYY release in human 

colon and ileum mucosae, independent of the autonomic and enteric nervous systems and blood-

borne factors such as DPP4. Although metformin has been shown to positively affect the gut 

microbiota composition818 and bile acid metabolism799, both of which could contribute to increased 

GLP-1 and PYY release186, my results suggest the drug’s acute action on gut hormone secretion can 

occur independently of these factors. The increased release of these two gut peptides is of 

significant metabolic benefit as both hormones are implicated in the success of type 2 diabetes 

remission and marked weight loss achieved by bariatric surgeries314,390,804,819. This is in-line with the 

growing acceptance of the view that metformin’s primary site of action is within the GI tract. 
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3.3 The Melanocortin-4 Receptor regulates the secretion of PYY and 

GLP-1 from the human gut epithelia 

3.3.1 Introduction 

The central melanocortin system is one of the most important regulators of energy homeostasis in 

mammals. The melanocortin-4 receptor (MC4R) is extensively expressed throughout the brain408 and 

plays a pivotal role in regulating feeding drive and energy expenditure409. Central MC4R function 

largely depends on the interplay between the two neuronal populations in the arcuate nucleus (ARC) 

of the hypothalamus, the anorectic proopiomelanocortin (POMC) and orexigenic Neuropeptide Y/ 

Agouti-related peptide (NPY/AgRP) neurons, both of which project widely throughout the brain. 

Upon stimulation by satiety signals such as insulin and leptin, POMC neurons release alpha-

melanocyte-stimulating hormone (α-MSH), the endogenous ligand of MC4R, to activate MC4R-

positive neurons in different brain regions. NPY/AgRP neurons, on the other hand, are stimulated by 

orexigenic signals such as ghrelin and release the endogenous MC4R antagonist, AgRP to antagonize 

the anorectic actions of POMC neurons on MC4R-positive neurons. NPY/AgRP neurons also secrete 

NPY, which acts primarily on the Y1 receptor (Y1R) in various brain regions to drive feeding626. In 

addition, there is a unidirectional control at the level of the ARC; NPY/AgRP neurons directly exert 

inhibitory effects on neighbouring POMC neurons via GABA and NPY release but POMC neurons do 

not directly affect the firing of NPY/AgRP neurons. Considering the importance of appetite control in 

energy homeostasis, it is not surprising that deficiencies in POMC or MC4R result in overt obesity 

that is characterized by severe hyperphagia and hyperinsulinaemia. Indeed, mutation in the MC4R 

gene is the most common, known monogenetic cause of human obesity820,821. 

The obesogenic effect of MC4R-deficiency appears to be primarily driven by increased feeding; male 

Mc4r-/- mice pair-fed to wild type controls showed close to normal body weight822. Of all the MC4R-

containing brain regions, the paraventricular nucleus (PVN) of the hypothalamus appears to be the 

most critical in mediating the effect of MC4R on feeding behaviours. Selective reactivation of Mc4r in 

PVN neurons in otherwise Mc4r-deficient mice completely rescued the hyperphagic phenotype and 

reduced the bodyweight of these animals by 60 %823,824. On the other hand, the central melanocortin 

system also regulates energy expenditure, partly through acting on the sympathetic nervous 

system825. MC4R expressed by sympathetic preganglionic neurons are partly responsible for diet- 

and cold-induced thermogenesis in brown adipose tissue (BAT) and beiging of white adipose tissue 

(WAT)826. However, impaired MC4R signalling in both the PVN and sympathetic nervous system does 

not fully account for the obese phenotype in whole body Mc4r-/- mice, which indicates MC4Rs 

expressed elsewhere could also contribute to maintaining energy homeostasis. Moreover, 
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peripherally-administered α-MSH and other MC4R peptide agonists are effective in reducing 

bodyweight823,827-831, despite the fact that these peptides do not readily cross the blood brain 

barrier832,833, further supporting this notion.  

The role of the gut in regulating energy homeostasis is exemplified by the remarkable success rate of 

bariatric surgeries in achieving clinically significant weight loss in obese patients; anatomical 

manipulations of the GI tract confer metabolic benefits that are not simply due to nutrient 

malabsorption. Despite the fall in circulating levels of the anorectic hormone, leptin, secondary to 

reduced fat mass, post-gastric bypass patients often report the restoration of a sense of satiety after 

surgery834. It is well-established that postprandial levels of various satiety-inducing gut hormones 

increase dramatically in post-bariatric patients. In particular, postprandial levels of GLP-1 and PYY 

increase dramatically to almost pharmacological levels in post-gastric bypass patients and are both 

implicated in inducing weight loss by potently suppressing appetite. Interestingly, in vivo MC4R 

activation significantly induced GLP-1 and PYY secretion in mice762 and humans835. In addition, a 

recent rodent study demonstrated the anorectic effect of chronic dual activation of GLP-1R/MC4R 

was similar to GLP-1R activation alone830, indicative of potential overlap of the two pathways. 

Murine gene expression analysis showed that Mc4r is expressed in L cells762, vagal efferents 

innervating the myenteric plexus836 and enteric glial cells837. It remains unclear if MC4R activation 

directly triggers L cell secretion from the intestinal epithelium, independent of any neural inputs. 

Moreover, although the human gut has been demonstrated to express MC4R838, it is unknown if the 

receptor is also enriched in L cells, and if so, how does it contribute to regulating the secretory 

function of human L cells. 

The aim of this study is to determine if MC4R activation directly triggers GLP-1 and PYY secretion 

from the human gut epithelium using the ex vivo static incubation model prepared from endoscopic 

biopsies and surgically resected human gut tissue, as described in previous sections. Based on in vivo 

results from mice and humans, I hypothesized that MC4R activation would significantly trigger GLP-1 

and PYY secretion from the human intestinal epithelium.  

3.3.2 Methods 

3.3.2.1 Human tissue collection: 

Morphologically normal ileal and colonic specimens were collected from consented patients (Table 

3.3) undergoing bowel resections for cancer or stoma reversal at Flinders Medical Centre and 

Flinders Private Hospital. In the case of resection specimens, samples were obtained from sites at 

least 10 centimetres proximal to the tumour location. Specimens from patients with clinical or 

macroscopic evidence of inflammatory bowel disease were excluded from this study. The specimens 
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were immediately placed in iced-cold Krebs buffer and transported to the laboratory for dissection 

within 15 minutes as previously described. The specimens were rinsed with iced-cold Krebs buffer to 

remove any luminal content and dissected clear of adipose, muscular and connective tissue. The 

mucosae were gently dissected off from the submucosae as intact sheets using a stainless steel 

spatula, cut into 5 mm pieces and weighed individually. 

 Ileum Specimens Colon Specimens 

N 14 24 

Gender (male/female) 4/10 13/11 

Age (years) 71.3 ± 2.7 (52 – 83) 68.7 ± 2.8 (38 – 87) 

BMI (kg/m2) 30.5 ± 1.6 (23 – 45) 29.4 ± 1.6 (19 – 55) 

Type 2 diabetes (Yes/No) 2/12 7/17 

Table 3.3 Specimen donor characteristics. Data presented as mean ± SEM. 

3.3.2.2 ex vivo secretion experiments: 

The biopsies and tissue pieces were incubated with 250 μL of pre-warmed Krebs buffer (control) or 

with test reagents in a 96-well plate for 15 minutes at 37°C in 95 O2/CO2. Following incubation, the 

supernatants were collected and stored in aliquots at -20 °C. Active GLP-1 and total PYY levels were 

quantitated using separate commercially available ELISA kits (EGLP-35K and EZHPYYT66K, 

respectively, both from Merck Millipore). For ileal secretion experiments, 300 mM glucose in Krebs 

solution was used as positive control. For colonic secretion experiments, a combination of IBMX and 

forskolin (I5879 & F6886, Sigma Aldrich, 10 μM each) were used as positive control. These conditions 

were chosen as they were shown to reliably trigger GLP-1 secretion from human ex vivo mucosal 

preparations252.  

3.3.2.3 Materials: 

α-MSH (M4135, Sigma Aldrich), PF06732395, setmelanotide and LY2112688 (all from Pfizer Inc.) 

were dissolved in DMSO at 20 mM and stored at -20 °C. [Nle4, D-Phe7]-α-MSH (NDP-α-MSH)(043-06, 

Phoenix Pharmaceuticals Inc.) and AgRP (83-132) (003-53, Phoenix Pharmaceuticals Inc.) were 

dissolved directly in Krebs buffer on the days of experiments. 

3.3.2.4 Statistical analysis: 

All statistical analysis was conducted as paired analyses, comparing responses in tissues obtained 

from the same individual to relevant control conditions. A paired ratio Student’s t-test was used for 

single comparisons. As secretion experiments did not always include a full sequence of all conditions 

used in this study, a paired one-way ANOVA with Fishers Least Significant Difference post-hoc test 
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was used for multiple comparisons. Statistical significance was p < 0.05. All data are shown as mean 

± SEM. 

3.3.3 Results 

3.3.3.1 MC4R agonsim in human ex vivo gut epithelia significantly increased GLP-1 and 

PYY secretion: 

The endogenous MC4R ligand, α-MSH caused significant increase in GLP-1 secretion from ileal and 

colonic preparations at concentrations tested (Figure 3.3.1).  
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Figure 3.3.1 α-MSH significantly triggered GLP-1 release from human ileal (A, n = 13 – 14, *p < 0.05, 
**p < 0.01) and colonic (B, n = 14, *p < 0.05, **p < 0.01) mucosae. 

α-MSH also significantly increased PYY secretion from colonic preparations by more than 2-fold at all 

concentrations tested (Figure 3.3.2.B) but none of the concentrations tested caused significant 

increase in PYY secretion from ileal preparations (Figure 3.3.2.A). 
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Figure 3.3.2 α-MSH did not significantly triggered PYY release from human ileum (A, n = 12 - 14) but 
significantly increased PYY secretion from colon (B, n = 20, **p < 0.05, ***p < 0.01, ****p < 0.001). 

A more potent and stable analogue of α-MSH, NDP-α-MSH839, also stimulated GLP-1 secretion from 

ileal and colonic preparations (Figure 3.3.3).  
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Figure 3.3.3 NDP-α-MSH stimulated GLP-1 release from human ileum (A, n = 10 - 14, *p < 0.05, **p < 
0.01) and colon (B, n = 20, *p < 0.05, **p < 0.01). 

NDP-α-MSH caused significant increase in PYY secretions from ileal preparations at 1 μM but not at 

lower concentrations (Figure 3.3.4.A). NDP-α-MSH caused significant increase in PYY secretion from 

colonic preparations at all concentrations tested (Figure 3.3.4.B).  
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Figure 3.3.4 NDP-α-MSH significantly triggered PYY release only at 1 μM in ileum (A, n = 9 – 14, *p < 
0.05). In the colon, NDP-α-MSH significantly triggered PYY release at all concentrations tested (B, n = 
21 - 14, ***p < 0.001, ****p< 0.0001).  

There were no significant differences in the magnitude of GLP-1 and PYY secretion in response to 10 

nM NDP-α-MSH between type 2 diabetic patients and non-diabetic patients. The magnitude of 

stimulation of either hormone was not correlated to the BMI of specimen donors (Figure 3.3.5). 
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Figure 3.3.5 BMI and T2D status of specimen donor did not affect the magnitude of GLP-1 and PYY 
secretion in response to 10 nM NDP-α-MSH (A - C: ileum; D - F: colon. Number above bars indicate n 
for each group). 
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Small molecule and peptide agonists of MC4R also caused significant GLP-1 (Figure 3.3.6) and PYY 

secretions from ileal and colonic preparations (Figure 3.3.7).  
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Figure 3.3.6 (A) The peptide MC4R agonist setmelanotide (1 nM) significantly triggered GLP-1 release 
from human ileum but not LY2112688 (1 nM) (n = 15). (B) Both LY2112688 and setmelanotide 
significantly triggered GLP-1 secretion from human colon at 1 nM (n = 17). (C) The small molecule 
MC4R agonist PF06732395 triggered GLP-1 release from human ileum at 100 nM and 1 μM (n = 8 – 
14) and (D) from human colon at all concentrations tested (n = 15-18). *p < 0.05, **p < 0.01, ***p < 
0.001 
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Figure 3.3.7 (A) The small peptide MC4R agonists LY2112688 and setmelanotide did not significantly 
triggered PYY release from human ileum (n = 13-14). (B) Both LY2112688 and setmelanotide 
significantly triggered PYY secretion from human colon (n = 24). (C) The small molecule MC4R agonist 
PF395 triggered PYY release from human ileum at 100 nM (n = 8 – 14) and (D) from human colon at 
all concentrations tested (n = 21-24). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

3.3.3.2 MC4R antagonism by AgRP attenuated NDP-α-MSH induced PYY secretion from 

human colonic epithelium:  

Since POMC neurons in the ARC exert a tonic inhibitory effect on PVN neurons to suppress feeding 

drive409, we sought to investigate if L cell secretion was also under tonic control from MC4R. 

Surprisingly, addition of the endogenous MC4R antagonist, AgRP, significantly stimulated PYY 

secretion at 1 and 10 nM (Figure 3.3.8 A). 10 nM AgRP significantly attenuated NDP-α-MSH, but not 

α-MSH-stimulated PYY secretion from colonic preparations (Figure 3.3.8 B).  
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Figure 3.3.8 The endogenous MC4R antagonist AgRP significantly stimulated PYY release from 
human colonic epithelial preparations at 1 and 10 nM but not at 100 nM (A, n = 10 – 13, *p < 0.05). 
α-MSH significantly triggered PYY secretion from basal (B, ***p < 0.001) and 10 nM AgRP did not 
attenuate this stimulation (*p < 0.05 compared to basal). 10 nM NDP-α-MSH also significantly 
triggered PYY release from basal (B, n = 13, **p< 0.01) but the stimulatory effect was blocked by 
equimolar AgRP (##p < 0.01 compared to 10 nM NDP-α-MSH alone). 

3.3.4 Discussion and Conclusion 

The aim of this experiment was to investigate if MC4R regulates GLP-1 and PYY secretion from the 

human intestinal epithelia in a similar fashion to that reported in the mouse762. Although Panaro and 

co-workers demonstrated that MC4R agonism significantly reduced chloride secretion across human 

intestinal mucosae762, which serves as a surrogate for PYY secretion due to its anti-secretory 

effect840, PYY and GLP-1 secretion from these mucosal preparations were not reported. Results from 

this current study are the first to provide direct evidence supporting a role of MC4R in regulating 

acute GLP-1 and PYY secretion from the human intestinal epithelium. The reasons for MC4R 

activation to cause less robust PYY secretion from ileal preparations when compared to colonic 

preparation is likely due to the fact that the predominant secretory product from ileal L cell is GLP-1, 

rather than PYY. PYY was secreted in the ileum at levels that were near the lower limit of 

quantitation of the ELISA assay used in this study and thus, the high signal-to-noise ratio may have 

hindered the detection of possible effects of MC4R activation. 

This study clearly demonstrated that α-MSH and other MC4R agonists have the capacity to directly 

stimulate GLP-1 and PYY release from the gut epithelia. The functions of MC4R-regulated GLP-1 and 

PYY release can be readily examined the effects of α-MSH in mouse models with attenuated GLP-1R 
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and Y2R signalling, with either genetic knockout animals or receptor antagonists such as exendin 9-

39 for GLP-1R and BIIE0246 for Y2R, the preferential receptor of PYY3-36
626. Another approach would 

be to use gut-specific Mc4r knockout animal models. Such experiments will provide valuable insights 

how MC4R-regulated GLP-1 and PYY secretion could potentially be implicated in the satiating 

actions827,828,831,841-844 and glucose-lowering effect831,845-847 of peripherally administered α-MSH and 

other MC4R agonists.  

While the results from the current study support my hypothesis that α-MSH directly triggered GLP-1 

and PYY secretion from the human gut epithelium, it raises the immediate question of what could be 

the source of endogenous MC4R ligands that regulate L cell secretion. Given the intense focus on the 

metabolic implications on ARC-derived α-MSH, it is tempting to suggest that centrally-derived α-

MSH may somehow activate MC4Rs on L cells, causing the release of GLP-1 and PYY to reinforce the 

satiating effects of α-MSH. However, α-MSH is a small peptide that does not readily cross the blood 

brain barrier to reach the peripheral circulation832,833. Although the ARC is believed to have greater 

exposure to peripherally-derived blood-borne factors than other hypothalamic nuclei due to its close 

proximity to the median eminence, nuclei targeted by POMC fibres reside in anatomical locations 

that are protected by an intact blood brain barrier848. POMC-neurons in the ARC are not known to 

have projections other than the forebrain, midbrain and periaqueductal grey matter408. Whilst a 

smaller population of POMC-neurons resides within the NTS, their projections appear to be confined 

to within the brainstem, specific nuclei in in the hypothalamus and the amygdala849. Altogether, it is 

unlikely for centrally derived α-MSH to act on MC4R expressed by L cells under physiological 

conditions.  

POMC is highly expressed by endocrine cells in the anterior pituitary gland and was once thought to 

be produced exclusively by melanotropes in the intermediate lobe850,851. However, emerging 

evidence suggests that corticotrophs in the anterior lobe of the anterior pituitary also produce α-

MSH, albeit in significantly smaller amount846. Importantly, pituitary-derived α-MSH accounts for 

approximately 70 % of circulating α-MSH in humans and this circulating α-MSH follows a prandial 

pattern that resembles those of insulin and gut hormones including GLP-1 and PYY846. While 

immunohistochemical data from an early study suggested anterior pituitary corticotrophs only 

express very low levels of glucokinase, if any852, Enriori and colleagues recently demonstrated that 

the glucose-induced α-MSH surge was abolished in mice with POMC-specific KATP channel signalling 

disruption846, which supports the notion that glucose is a regulator of peripheral α-MSH secretion. 

Intriguingly, acute intravenous infusion of α-MSH significantly reduced glucose excursion in mice 

during intraperitoneal glucose tolerance test and markedly increased glucose infusion rate during 

hyperinsulinaemic-euglycaemic clamp studies, an effect that was not blocked by 
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intracerebroventricular administration of AgRP. This indicates α-MSH regulates glucose homeostasis 

through peripheral melanocortin receptors846. Although α-MSH was demonstrated to increase 

glucose uptake into skeletal muscles846,853, it is possible that this is not the only pathway through 

which α-MSH acutely improves glucose tolerance. The postprandial α-MSH surge could also trigger 

GLP-1 and PYY release from the distal small intestine and colon in an endocrine fashion. Postprandial 

plasma levels of GLP-1 and PYY increase rapidly, long before ingested nutrients arrive in the L cell-

rich distal ileum and colon to directly trigger GLP-1 and PYY secretion854. Although the duodenum 

has considerable populations of L cells251 that are activated upon glucose exposure252, it does not 

exclude the possibility that humoural factors such as α-MSH also regulate postprandial gut hormone 

release. However, circulating α-MSH in humans occurs in the picomolar range846,855-858 while the 

concentrations of α-MSH used in this current study, as well as in other published work that adopted 

ex vivo approaches762,846,853 were in the high nanomolar to micromolar range, nearly a thousand-fold 

higher than normal physiological levels of the endogenous hormone. The notion of pituitary-derived 

α-MSH stimulating L cell secretion is further challenged by the fact that circulating α-MSH is highly 

susceptible to enzymatic degradation859, which makes it even less unlikely for substantial amounts of 

pituitary-derived α-MSH to reach the basolateral membranes of L cells to activate MC4R and 

subsequently trigger GLP-1 and PYY release.  

Most binding studies consistently showed hMC4R to be activated by α-MSH with an EC50 in the 

nanomolar range762,860-864. This suggests endogenous ligands for MC4R expressed on L cells most 

likely originate from sources of relative close proximity to the gut epithelium. Interestingly, the 

intestinal mucosa do not only express Pomc865, but also produce α-MSH866. Therefore, it is plausible 

that intestinal POMC cells secrete substantial α-MSH to activate neighbouring L cells in a paracrine 

fashion, in addition its inhibitory effect on the release of pro-inflammatory cytokines in the gut855,867. 

Although the factors governing α-MSH secretion from POMC-containing gut epithelial cells remain 

unclear, the fact that the magnitude of the postprandial α-MSH surge is proportional to the caloric 

load846 supports the notion that these cells have nutrient sensing capacity, much like L cells and 

other enteroendocrine cells, and are well-situated to account for the postprandial α-MSH surge.  

One unexpected finding in the current study is that while AgRP significantly attenuated NDP-α-MSH-

induced GLP-1 and PYY secretion from the human colonic intestinal epithelial preparations, it has 

stimulatory effect on the preparations in the absence of α-MSH and NDP-α-MSH. This finding was 

later confirmed by follow-up experiments performed by others in our laboratory. Enigmatically, this 

appears to be an AgRP-specific effect as another MC4R antagonist, SHU9119, did not stimulate L cell 

secretion at similar or higher concentrations (Keating et al., unpublished observations). Results from 

the AgRP dose-response experiment in this present study suggests AgRP could be a partial agonist at 
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MC4R on human L cells, as it stimulated GLP-1 and PYY by 1.5 fold, compared with NDP-α-MSH, 

which stimulated secretion by more than two fold. However, such interpretation is complicated by 

the observation that 10 nM AgRP completely abolished stimulatory effects of NDP-α-MSH; if it is 

indeed a partial agonist, PYY and GLP-1 secretion should still be significantly elevated to the levels 

seen with AgRP alone, though to a lesser extent than that induced by equimolar NDP-α-MSH. The 

nature of AgRP-MC4R interaction has been a subject of ongoing investigation as it has been 

suggested that rather than a pure competitive antagonist, AgRP acts as an inverse agonist on MC4R 

in vitro868 and in vivo869. α-MSH activates MC4R activation in a Gαs-dependent manner, which results 

in adenylyl cyclase activation and elevated intracellular cAMP levels862,864,870. If AgRP is a pure inverse 

agonist, its binding to MC4R would lead to decoupling of Gαs from the receptor and thereby 

attenuate any constitutive activities. However, emerging evidence support AgRP as a biased agonist 

at MC4R in that it favours Gαi/o activation, which leads to inhibition of adenylyl cyclase871. Whilst the 

concepts of AgRP being a pure competitive antagonist, an inverse agonist or a biased agonist can all 

sufficiently explain AgRP-attenuated NDP-α-MSH-stimulated GLP-1 and PYY release, none provides 

an adequate explanation of why would AgRP paradoxically stimulate GLP-1 and PYY secretions. 

Interestingly, AgRP increases forskolin-induced cAMP elevations in hypothalamic GT1-7 cells, a cell-

line that endogenously express MC4R, in contrast to other in vitro experiments based on 

overexpression of the MC4R862. The authors attributed this observation to the differential G-protein 

regulation of different families of adenylyl cyclase and that AgRP sensitizes group 2 adenylyl cyclases 

by releasing βγ-subunits from Gi/o proteins862. It is possible that AgRP induces L cell secretion via this 

pathway. Another possibility is that AgRP acts on other enteroendocrine cells through an 

unidentified receptor to regulate the secretion of other hormones, which subsequently acts on 

neighbouring L cells in a paracrine fashion to stimulate the release of GLP-1 and PYY.  

The magnitude of GLP-1 and PYY response to the stimulation by 10 nM NDP-α-MSH did not show 

any significant correlation to the BMI of the specimen donors, which suggest MC4R activated- L cell 

secretion is preserved in obese individuals. Obese individuals have higher circulating plasma levels of 

α-MSH and AgRP857,858,872,873 but the underlying mechanism and the physiological implications of such 

increases remain unclear. The fact that the anorectic effects of subcutaneously infused MC4R 

agonists are preserved in obese humans835 and non-human primates829 suggests that unlike the 

leptin pathway, the MC4R signalling pathway is intact in obese individuals. Interestingly, the 

elevated AgRP level could be a protective mechanism against potential MC4R desensitization from 

prolonged activation secondary to elevated α-MSH levels874,875. The binding of AgRP to MC4R has 

been shown to promote receptor endocytosis861, which is essential for maintaining MC4R 

responsiveness to the stimulatory effects of α-MSH876. Thus, AgRP could be an integral component 
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to normal MC4R function. Nonetheless, the physiological implications of such observations are yet 

to be determined. 

In summary, results from this experiments confirmed the findings in mice from Panaro et al., which 

demonstrated GLP-1 and PYY secretion from the gut is under the control of MC4R762. Endogenous 

and synthetic MC4R agonists all triggered significant GLP-1 and PYY release from human intestinal 

epithelial preparations. However, it is to my surprise that AgRP, an antagonist, or perhaps an inverse 

agonist of MC4R, also triggered significant GLP-1 and PYY release from these preparations. It is 

crucial to identify the source of the endogenous ligand that activates L cell MC4R as this will provide 

invaluable insight to potentially new functions of the receptor that have not been previously 

described. 
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3.4 gp130 cytokines stimulate GLP-1 secretion in human gut 

epithelia 

3.4.1 Introduction 

Chronic low-grade inflammation is one of the hallmarks of type 2 diabetes232 and is believed to be a 

driver of obesity-induced peripheral insulin resistance231,877. Hyperglycaemia878, increased levels of 

circulating saturated fatty acids879 and ceramide880 are all potent triggers of the inflammatory 

response, likely through the action the Toll-like receptors (TLRs). Activation of TLRs results in 

increased production of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) and 

interleukin (IL)-1881. These cytokines can further recruit other immune cells, thereby amplifying the 

initial inflammatory response. Macrophage infiltration in adipose tissue234,882, skeletal muscle883 and 

pancreatic islets884,885 all have deleterious effects on metabolism. Circulating levels of various pro-

inflammatory cytokines are significantly elevated in obese and T2D individuals, compared to healthy 

controls886-891. Attenuating the actions of TNF-α and IL-1 resulted in significantly improvements in 

insulin sensitivity and glucose tolerance in diabetic and diet-induced obesity animal models 892-894, 

and humans with type 2 diabetes895. 

The cytokine, IL-6, is produced by all immune-competent cells and is crucial in mediating immune 

responses against infections896,897. However, exaggerated IL-6 action also underlies the pathogenesis 

of many inflammatory conditions such as rheumatoid arthritis898,899. Notably, elevated levels of IL-6 

in T2D patients have been consistently reported233,890,900,901, which supports the view that IL-6 could 

have detrimental effects on metabolism and be a driver of T2D pathogenesis902. This notion is 

further supported by the fact that serum levels of IL-6 are positively correlated with increasing 

adiposity903-908, as adipose tissue is also a prominent source of IL-6906. However, this view is 

challenged by a study that showed attenuated IL-6 action causes obesity and impaired glucose 

tolerance in various mouse models909-911. Importantly, such disturbed metabolic phenotypes could 

be rescued by exogenous supplementation of IL-6 in Il6 knockout mice909, which suggests IL-6 plays 

an important role in the maintenance of energy balance and glucose homeostasis. Furthermore, 

circulating IL-6 levels are profoundly increased during endurance running912,913 , an activity with 

known benefits in weight loss and glycaemic control. Seminal studies later demonstrated that 

exercise-induced surges in IL-6 levels are produced by actively contracting skeletal muscles914-916, 

rather than by adipocytes or circulating immune cells917. Skeletal muscle-derived IL-6 increases 

insulin-stimulated glucose uptake and fatty acid oxidation in skeletal muscles918-921. Indeed, it has 

been proposed that the metabolic benefits of exercise, such as improved insulin resistance, are 

conferred by skeletal muscle-derived IL-6922,923 as animals with attenuated IL-6 function did not 
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benefit from metabolic gains secondary to exercise924-926. Intriguingly, increased GLP-1 secretion was 

shown to contribute to the metabolic benefits of exercise-induced IL-6 in mice95; acute IL-6 

treatment was also shown to increase GLP-1 secretion in mice95,927. Although it remains unclear if IL-

6 directly causes GLP-1 secretion in humans, increased GLP-1 levels in critically ill patients are 

strongly associated with elevated IL-6 levels927,928. However, despite its many desirable metabolic 

benefits, IL-6 proves to be a less-than-ideal therapeutic target as it is a potent pro-inflammatory 

cytokine and enhancing its function would have undesirable consequences such as increasing 

tumourigenesis929-932. 

IL-6 belongs to the gp130 cytokine family, named after the membrane-bound signal-transducing 

protein glycoprotein 130 receptor β (gp130Rβ) that is central to signal transduction of all of the 

different cytokines in the gp130 cytokine family. The binding of IL-6 to its receptor, IL-6Rα, triggers 

the homodimerization of two gp130Rβ subunits and subsequently signals through the JAK/STAT 

pathway897. In addition to signalling through membrane-bound IL-6R (referred to as “classical 

signalling”), IL-6 can also signal through a soluble form of IL-6R (sIL-6R), which lacks the cytoplasmic 

and transmembrane domains (referred to as “trans signalling”)933. The circulating IL-6/sIL-6R can 

signal gp130Rβ-expressing cells that do not express IL-6R. As gp130Rβ is ubiquitously expressed in 

almost all cell types and IL-6R expression is more specific934, many of the undesirable pro-

inflammatory effects of IL-6 have been attributed to trans-signalling930,935. Therefore, an IL-6R 

agonist that does not trigger trans-signalling could circumvent the negative effects of IL-6R 

signalling. 

Interestingly, another member of the gp130 cytokine family, ciliary neurotrophic factor (CNTF), is 

also a ligand of IL-6R, albeit of a lower affinity than IL-6; the CNTF/IL-6R complex causes dimerization 

of gp130Rβ and the leukaemia inhibitory factor receptor (LIFR), instead of gp130Rβ 

homodimerization as with IL-6/IL-6R936. CNTF is a neural cytokine expressed predominantly by 

astrocytes in the CNS937 and Schwann cells in the PNS938. In addition to IL-6R, CNTF also signals 

through the CNTF receptor (CNTFR) and triggers the dimerization of LIFR and gp130Rβ as it would 

through IL-6R binding. Whilst CNTF can signal through IL-6R in humans, IL-6 does not signal through 

CNTFR934. Contrary to many cytokines, the CNTF protein is sequestered within the cytoplasm and is 

only released upon cell lysis as the protein itself lacks a secretory signal sequence peptide939. 

Interestingly, there is evidence to suggest that GLP-1R could be a downstream effector of CNTF, at 

least in the CNS, as CNTF treatment increased proglucagon expression in primary mouse 

hypothalamic neurons and the neurotrophic effects of CNTF were abolished in Glp1r -/- mice940. 

Originally trialled as a treatment for amyotrophic lateral sclerosis due to its pro-survival effects on 

injured neurons, recombinant human CNTF did not improve disease outcome in the clinical trial but 
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significant weight loss was observed in treated patients941, prompting an interest in using CNTF as an 

anti-obesity treatment. Indeed, CNTF was highly efficacious in promoting weight loss in pre-clinical 

animal models, especially in leptin-resistant animal models, through increased satiety and increased 

energy expenditure942-949. Moreover, CNTF improved glucose homeostasis in non-obese mouse 

model of T2D950. As these favourable effects of CNTF treatment are similar to that of GLP-1 receptor 

agonists, it is possible that GLP-1 mediates some of the metabolic benefits of CNTF. Nonetheless, 

despite its significant weight-loss efficacy in humans, the development of CNTF as an anti-obesity 

agent was not pursued as many treated patients developed high levels of auto-antibodies against 

the CNTF analogue used951, likely due to the non-secretory nature of endogenous CNTF934. In 

addition, due to the low level of CNTFR expression, coupled with its low affinity for the more widely 

expressed IL-6R, high concentrations of CNTF would be required to achieve beneficial metabolic 

outcomes in vivo.    

An IL-6/CNTF chimeric protein, IC7, was developed in order to overcome the pro-inflammatory 

effects of IL-6R signalling and the immunogenicity and low potency of CNTF952. This protein has 

higher affinity for IL-6R than endogenous CNTF but retains a specific LIFR binding epitope such that it 

only signals through the gp130Rβ/LIFR heterodimer, instead of the gp130Rβ homodimer936, thereby 

preventing the undesirable IL-6R trans signalling. It was believed that such a “designer cytokine” 

would retain the desirable features of the two parent proteins953, such as the GLP-1 secretagogue 

effect of IL-6. Indeed, in high-fat fed mice, IC7 treatment significantly reduced fat mass and 

improved glucose tolerance. Importantly, such effects are partially attenuated in Glp1r knockout 

mice, indicating GLP-1 mediates some of the metabolic benefits conferred by IC7 treatment 

(personal communication, Professor Mark Febbraio). However, it remains to be determined if 

targeting IL-6R signalling would stimulate GLP-1 secretion in humans. As such, the first aim of this 

study was to determine if IL-6 directly triggers L cell secretion from human gut epithelial tissue. I 

hypothesize that IL-6 would trigger GLP-1 secretion from the human gut epithelia, based on results 

from seminal rodent studies95,920. The second part of this study was done in collaboration with the 

developer of IC7, Professor Mark Febbraio. A huge body of data concerning the pharmacodynamics 

and pharmacokinetics of IC7 had been gathered using various preclinical models but it remained 

unclear whether these preclinical findings could be translated in to the clinic. As GLP-1 was shown to 

be implicated in some of the metabolic benefits of IC7, I aimed to determine if IC7 triggers GLP-1 

secretion in the human colonic epithelia. 
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3.4.2 Methods 

3.4.2.1 Human tissue collection for ex vivo studies in human colonic mucosae 

Patients gave written informed consent for colon tissue donation from resected large intestine at 

Flinders Medical Centre and Flinders Private Hospital approved by the Southern Adelaide Clinical 

Human Research Ethics Committee. Human ileal and colonic tissue were obtained from patients 

undergoing bowel resection for cancer and stoma reversal. In cases of cancer resection, tissue 

samples were obtained from sites at least 10 centimetres away from the tumour location. 

Specimens from patients that were indicative for any form of inflammatory bowel disease were 

excluded from this study. Characteristics of the patient cohort are listed in Table 3.4. None of the 

patients had diabetes. The specimens were immediately placed in iced-cold Krebs buffer and 

transported to the laboratory for dissection within 15 min as described previously. The specimens 

were rinsed with iced-cold Krebs buffer to remove any luminal content and dissected clear of 

adipose, muscular and connective tissue. The mucosae were gently dissected off from the 

submucosae as intact sheets using a stainless steel spatula, cut into 5 mm pieces and weighed 

individually. The mucosal pieces were then transferred to a 96-well plate for secretion assays. 

3.4.2.2 Secretion experiments 

Mucosal pieces were incubated with 200 μL of buffer (control) or buffer containing IL-6, or various 

concentrations of IC7 (from 1 ng/mL up to 1 μg/mL) or positive controls in a 96-well plate for 15 min. 

The buffer was a modified Krebs buffer described above with the addition of sitagliptin 1 μM, 0.1% 

BSA (A1595, Sigma Aldrich) at pH 7.4. Following incubation at 37°C in 95% O2/5% CO2, supernatants 

were collected and stored in aliquots at -20°C. Active GLP-1 levels were quantitated using 

commercially available ELISA kits, according to manufacturer’s instructions (EGLP-35K, Merck 

Millipore, Billerica, MA, USA). 

3.4.2.3 Test agents 

Recombinant human IL-6 (I1395, Sigma Aldrich) was dissolved in 0.1 % BSA in PBS as a 100 μg/mL 

stock and stored at -20°C as single-use aliquots. 100 ng/mL dose was chosen for secretion 

experiments as it was shown to be effective in triggering GLP-1 secretion from GLUTag cells95. IC-7 

was a gift from Professor Mark Febbraio from the Garvan Institute of Medical Research under a 

Material Transfer Agreement. IC7 was dissolved in 0.1% BSA in PBS as a 10 mg/mL stock and stored 

at -20°C as single-use aliquots. IC7 concentrations were selected based on concentrations that were 

sufficient to cause significant increased glucose uptake in ex vivo mouse soleus muscle953. 

300 mM glucose was used as positive control for ileal preparations, as it was demonstrated in 

previously in section 3.1 that ileal GLP-1 secretion is sensitive to high glucose. IBMX and forskolin 
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(FSK) (I5879 & F6886, Sigma Aldrich) (10 μM each) and 70 mM KCl were used as positive controls for 

colonic preparations. For the 70 mM KCl solution, an equimolar amount of NaCl was removed to 

maintain osmolarity. Only colonic samples that show positive response to at least one positive 

control (70 mM KCl or 10 μM IBMX/FSK) were included in analysis. 

3.4.2.4 Statistical analyses 

All statistical analyses were conducted as paired analyses, comparing responses in tissues obtained 

from the same individual to relevant control conditions. A paired-ratio t-test was used for single 

comparisons. A paired one-way ANOVA with Fishers Least Significant Difference post-hoc test used 

for multiple comparisons. Statistical significance was p < 0.05. All data are shown as mean ± SEM. 

 Ileum specimens Colon specimens 

N 8 29 

Gender (male/female) (4/4) (19/10) 

Age (years) 73.4 ± 3.2 (57 – 83) 64.6 ± 2.5 (38 – 93)  

BMI (kg/m2) 29.58 ± 1.6 (25 – 38.5) 29.6 ± 1.5 (19 – 55) 

Table 3.4 Characteristics of the specimen donors 

3.4.3 Results 

Acute treatment of 100 ng/mL IL-6 significantly triggered GLP-1 secretion by two fold from human 

ileal and colonic epithelial preparations (Figure 3.4.1). 
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Figure 3.4.1 100 ng/mL IL-6 significantly induced GLP-1 secretion from (A) ileum (n = 8; **p < 0.01) 
and (B) colon (n = 14; *p < 0.05) 
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In line with results discussed in previous chapter, the increase in GLP-1 secretion from the colon was 

also accompanied by a significant increase in PYY secretion (Figure 3.4.2). 
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Figure 3.4.2 100 ng/mL IL-6 triggered significant PYY secretion from human colonic epithelial 
preparations (n = 19; ****p < 0.0001). 

Acute exposure to various concentrations of IC7 (1 ng/mL to 1 μg/mL) triggered significant increases 

in intact GLP-1 levels when compared with control by at least 1.5 fold (Figure 3.4.3). 
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Figure 3.4.3 The CNTF-IL-6 chimeric protein stimulated significant GLP-1 secretion from human 
colonic epithelial preparations at all concentrations tested (n = 10; **p < 0.05, ***p < 0.01). 

3.4.4 Discussion and Conclusion 

This is the first demonstration of the stimulatory effect of IL-6 on GLP-1 secretion from the human 

intestine. Previous work demonstrated that IL-6 is a GLP-1 secretagogue in mice95 and that GLP-1 

levels are positively associated with circulating IL-6 levels in critically ill patients927 or patients 

undergoing cardiac surgeries928.  
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The fact that both IL-6 and the CNTF/IL-6 chimeric protein, IC7, are potent GLP secretagogues 

suggest that IL-6R is expressed in the gut epithelium, possibly on L cells. Although this study did not 

seek to investigate the underlying mechanisms of IL-6-induced GLP-1 secretion from the human gut 

epithelium, IL-6 induced AMPK activation could be implicated as it mediates the enhanced fatty acid 

oxidation and glucose uptake in skeletal muscles triggered by both IL-6918,954 and CNTF948. As it has 

been demonstrated in section 3.3, AMPK activation by metformin triggered GLP-1 secretion from the 

human gut epithelia and thus it is reasonable to speculate that AMPK activation is implicated in IL-6-

induced GLP-1 secretion in humans. Immunolabelling of IL-6R would be an appropriate next step to 

determine if GLP-1-secreting cells express IL-6R. The underlying mechanism of IL-6-induced GLP-1 

secretion can be further interrogated with AMPK inhibitors, such as dorsomorphin.  

Although exercise acutely increases GLP-1955-957 and IL-6912,913 levels in humans, results from this 

experiment provide direct evidence that IL-6 causes GLP-1 secretion in humans. The concentration 

of IL-6 used in this study resembles that observed during exercise or sepsis, instead of that observed 

in a chronic low-grade inflammation setting. This leads to the question of what could be the 

physiological functions of IL-6 induced GLP-1 secretion in humans under such scenarios. Since insulin 

secretion is suppressed and glucagon secretion is increased during exercise955, it is unlikely for IL-6 

induced GLP-1 to exert any effects through its insulinotropic and glucagonostatic actions. GLP-1 

causes rapid microvascular recruitment in human skeletal muscles958-960 and could increase GLUT4 

translocation to enhance glucose uptake in skeletal muscles958,961, although the latter finding 

remains  controversial960. Nonetheless, glucose uptake into skeletal muscle during exercise is 

believed to be partly mediated by insulin-independent pathways962,963. As such, it is possible that in 

the face of intramyocellular glycogen depletion during exercise, skeletal muscles release IL-6 to 

increase glucose uptake, partly through the action of GLP-1.  

GLP-1 could also serve as a regulator of IL-6 secretion and as a modulator of its downstream effects. 

IL-6 secretion in response to a lipopolysaccharide (LPS) challenge is significantly exaggerated in 

Glp1r-/- mice, in comparison with wildtype controls964. The notion of a potential IL-6-GLP-1 feedback 

loop is further supported by the report that a seven-day treatment of the GLP-1R agonist, liraglutide 

in T2D patients significantly reduced circulating IL-6 levels965. IL-6 levels are markedly elevated 

during extreme physiological stress such as septic shock, cardiovascular events or invasive surgeries. 

While a powerful inflammatory response is warranted in these scenarios to ensure survival, 

mechanisms need to be in place to limit any collateral damages caused by elevated levels of pro-

inflammatory cytokines such as endothelial damage966. GLP-1R agonists exert protective effects on 

endothelial cells from pro-inflammatory cytokine-induced oxidative stress967,968. Indeed, GLP-1 

infusions have been demonstrated to significantly improve cardiovascular outcomes in post-
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myocardial infarction patients969,970, likely through increased vasodilation and coronary blood 

flow971. GLP-1 also acts directly on immune cells to attenuate inflammatory responses972-974, with 

pro-inflammatory cytokine secretion from human invariant natural killer T cells being dose-

dependently suppressed by GLP-1974. Altogether, these reports support the view that IL-6-induced 

GLP-1 secretion under physiological stress could be an intrinsic protective mechanism against the 

inflammatory actions of IL-6.  

IC7 is an effective anti-obesity tool in various animal models975,976, which is consistent with the 

actions of its parent moleculte952, CNTF942-949. The rationally designed IL-6/CNTF chimeric protein 

demonstrated low immunogenicity in an array of human cell-based assays975, which makes it a more 

attractive drug candidate than other CNTF analogues that had previously failed clinical trials. IC7 also 

has a higher affinity for IL-6R than endogenous CNTF such it can exert a CNTFR-like intracellular 

signalling cascade through membrane-bound IL-6R934,936 at a much lower concentration than that 

required of endogenous CNTF, further reducing the likelihood of immunogenic reactions to the 

chimeric protein. The fact that IC7 significantly triggered GLP-1 secretion implies that the IL-

6R/gp130Rβ/LIFR complex is capable of causing GLP-1 release. This result indicates that IL-6 induced 

GLP-1 secretion does not depend of IL-6R trans-signalling as IC7 does not signal through sIL-6R977. 

The profound pro-inflammatory effects of IL-6 are believed to be mainly mediated by trans-signalling 

through sIL-6R935. 

The distinction between exercise-induced cytokine release and elevated cytokine levels secondary to 

chronic low-grade inflammation is that the former is a transient surge of cytokines (IL-6 levels 

increase by up to 100-fold in some cases978) while the latter is characterized by a prolonged, 2-3 fold 

elevation of cytokine levels. In addition, the types of cytokines that are upregulated in the two 

scenarios are profoundly different; IL-6 is by far the most prominent exercise-induced cytokine while 

TNF-α and IL-1β, the pro-inflammatory cytokines that are characteristic of low grade inflammations, 

generally do not increase in response to exercise979. Given the positive effect of IL-6 on metabolism 

such as enhanced insulin sensitivity and increased fatty acid oxidation in skeletal muscle979, it is 

possible that elevated levels of the cytokines observed in obese and T2D individuals could be an 

adaptive response to the metabolic challenge of overnutrition. Enhancing GLP-1 secretion could be a 

way for IL-6 to restore metabolic homeostasis as GLP-1 has trophic effects on pancreatic β cells and 

central anorectic effects. 
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4 The role of dynamin in mediating L cell secretion in 

the human colon 

4.1 Introduction 

As discussed in Chapter 1, metabolic gains from bariatric surgeries have been partly attributed to 

enhanced postprandial levels of the secretory products of the enteroendocrine L cell, GLP-1 and 

PYY314,390. Targeting the individual pathways has shown promising results with liraglutide, for 

example, now an established T2D treatment and has recently been approved as an anti-obesity 

treatment. However, the magnitude of weight-loss achieved is modest compared to that achieved 

through surgery389. The efficacy of PYY in appetite suppression has also been clearly 

demonstrated631,632 but dose-limiting gastrointestinal side effects980,981 and formulation challenges804 

have significantly lessened the appeal of PYY alone as a therapeutic target. Interestingly, GLP-1 and 

PYY act synergistically to suppress appetite in humans982,983. GLP-1 and PYY are co-localized in L 

cells107,620 and in a previous chapter, I demonstrated that the release of the two hormones is strongly 

correlated. Thus, development of an L cell secretagogue that is capable of triggering the co-release 

of these hormones such that they could act synergistically is of strong clinical interest. The pursuit to 

develop orally-available, small molecule L cell-specific secretagogues has been met with limited 

success. Agonists for the long chain fatty acid receptor GPR119 agonists had demonstrated 

impressive efficacy in pre-clinical models674,751,984 but were ineffective in humans752,985, potentially 

due to substantial species differences620. Although macronutrients are potent L cell secretagogues986, 

the caloric content of nutrients would offset the appetite suppressing effects of these hormones. 

Importantly, glucose113,115,116 and lipids117 also stimulate the release of other gut hormones such as 

serotonin, which has obesogenic and diabetogenic potency121,123,132. Therefore, identification of an L 

cell-specific secretory pathway is crucial.  

One of the major obstacles that hinders the development of effective L cell secretagogues is our lack 

of knowledge of the underlying molecular mechanisms governing the secretory process of human 

enteroendocrine L cells, due to a lack of highly translatable in vitro models. While it has been 

established that L cells are electrically-excitable692,709 and that exocytosis of GLP-1 and PYY-

containing vesicles is triggered by increased intracellular calcium692, the molecular machinery 

governing the exocytotic process in L cells remains largely unknown. Exocytosis involves the 

translocation of vesicles from the cytoplasm towards the target plasma membrane, followed by 

tethering and docking of the vesicles at the target membrane, which are then primed for release 

upon stimulation987. The SNARE (soluble N-ethyl-maleimide-sensitive fusion protein attachment 
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protein receptor) hypothesis was proposed over two decades ago988 and remains the most widely 

accepted working model of cellular exocytosis989. Simplistically, this model proposes that the v-

SNARE proteins (synaptobrevin) embedded within the vesicular membrane interact with the t-

SNARE proteins (SNAP25 and syntaxin) on the target plasma membrane to form the SNARE complex, 

which is stabilized by the calcium-sensor, synaptotagmin to prevent uncoordinated membrane 

fusion. Ca2+-binding results in a conformational change in synaptotagmin that allows the SNARE 

complex to zipper, thereby bringing together the vesicular and target plasma membranes to increase 

the curvature and lateral tension of these membranes, eventually causing the fusion of the two 

membranes. This results in the formation of a fusion pore, from which vesicular contents such as 

neurotransmitters and hormones are released into extracellular space.  

Substantial parts of our knowledge concerning the exocytotic process are derived from studies using 

adrenal chromaffin cells as the prototype secretory cell990, given the relative ease to obtain cultures 

of high purity and that their relatively slow rate of exocytosis allows for detailed interrogations991. 

Moreover, catecholamines are oxidizable, which permits precise quantification of transmitter 

released per exocytotic event by electrophysiological techniques such as carbon fibre 

amperometry992. However, significant differences do exist between different secretory cell types. 

Work from our laboratory has demonstrated that adrenal chromaffin cells release over 70 times 

more catecholamines per exocytotic event than serotonin-secreting enterochromaffin cells do from 

vesicles that are of comparable size109, likely due to markedly smaller fusion pores formed in the 

latter993. Thus, extrapolations of results derived from adrenal chromaffin cells to enteroendocrine 

cells onto other cell types should be made with caution.  

Detailed characterization of the mechanisms underlying the exocytotic process of enteroendocrine L 

cells specifically remains of high importance to broaden our understanding of L cell physiology. 

Unlike enterochromaffin cells, which make up half of the enteroendocrine cell population and can be 

isolated as a highly-enriched culture using a Percoll density gradient, similar approach to obtain 

viable L cell culture were not successful, as discussed in detailed in chapter 2. In addition, secretory 

products of L cells are peptides that are not readily oxidizable, in contrast to serotonin released by 

enterochromaffin cells. As a result, single-cell electrophysiological techniques such as patch-

clamping and amperometry cannot be used to interrogate the mechanisms underlying the secretory 

process of human enteroendocrine L cells. Nonetheless, knowledge concerning the exocytotic 

process in other neuroendocrine cell types has been invaluable as they formed the basis of several 

recent studies that investigated the physiology of L cell exocytosis. These were based on the 

knowledge that the calcium sensor synaptotagmin-7 plays a crucial role in mediating exocytosis in 
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both pancreatic α994 and β995 cells and the same protein was identified as a positive regulator of GLP-

1 secretion from enteroendocrine L cells996. Synpatotagmin-7 deficiency impaired oral glucose-

induced GLP-1 secretion in mice by approximately 50% and whole-cell patch-clamping experiments 

in GLUTag cells indicated that the impairment lies downstream of the calcium signal996. The fact that 

synaptotagmin-7 knockout did not completely abolish GLP-1 secretion, unlike that observed for 

glucagon secretion994, suggests that other members of the synaptotagmin family are likely to be 

involved in the exocytosis process in L cells. Recently, the t-SNARE protein, syntaxin 1A was shown to 

be regulate L cell exocytosis, although similar to synpatotagmin-7, intestine-specific knockout of 

syntaxin 1A did not completely abolish GLP-1 secretion, indicating this protein is involved in, but not 

crucial in mediating L cell exocytosis997.  

Dynamin is a 100 kDa GTPase mechanochemical enzyme that is encoded by three DNM genes in the 

mammalian genome. There are distinct differences in the expression patterns of the three dynamin 

isoforms: dynamin-1 is selectively expressed in neuronal cells998, dynamin-2 is ubiquitously 

expressed in all cell types999 while dynamin-3 is expressed primarily in the brain, testis1000,1001 and 

lungs1002. Dynamin has a well-established role in mediating clathrin-mediated endocytosis, a pivotal 

cellular process that is closely coupled with exocytosis1003. Without effective endocytosis, vesicle 

recycling within the cell is impaired, which would compromise subsequent exocytotic processes1004. 

Insulin secretion from pancreatic β cells that are deficient in Dnm2 is impaired due to compromised 

vesicle recycling1005. Moreover, the insertion of the vesicular membrane into the plasma membrane 

from an exocytotic event causes a net expansion of the plasma membrane and therefore, lowers the 

membrane tension. Thus, prompt membrane retrieval via endocytosis is required to return the 

plasma membrane tension to homeostatic set point1006. The GTPase activity of dynamin is critical in 

endocytosis as it provides the mechanical force that elongates the neck of a budding endocytic 

vesicle and causes its subsequent fission from the plasma membrane. Dynamin is also involved in 

the maturation of endocytic vesicles by promoting the recruitment of an array of endocytic proteins, 

many of which directly bind to dynamin1007. 

In addition to its critical role in mediating endocytosis, there is an increasing appreciation for 

dynamin’s role in regulating the exocytosis process. Fusion pore expansion during exocytosis is 

under the control of dynamin1008,1009, which in turns governs the amount of vesicular content 

released. The rate of fusion pore expansion and quantal release are significantly reduced when the 

dynamin’s action is disrupted1008-1010. Recent work from our laboratory demonstrated that the small 

molecule dynamin activator, Ryngo 1-231011, significantly increased the amount of catecholamine 

release in the murine chromaffin cells by promoting dynamin oligomerization, a process that is 

critical to stimulate the GTPase activity essential for its downstream mechanical actions1012. It is 
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believed Ryngo 1-23 does so by stabilizing the ring structure of the dynamin oligomer1013, thereby 

stabilizing the opening of the fusion pore to enable catecholamine release. The aim of this study is to 

determine whether the release of GLP-1 and PYY from human colonic L cells could be triggered by 

activating dynamin with Ryngo 1-23 and other related dynamin activators. I hypothesize that 

dynamin is implicated in regulating the secretory process of enteroendocrine L cells. Previous work 

from our laboratory also showed that the positive effects of Ryngo 1-23 on murine adrenal 

chromaffin cells were completely abolished by disrupting F-actin polymerization or myosin II action 

with latrunculin B and blebbistatin, respectively1012. As actin and myosin II are major binding 

partners of dynamin, their roles in L cells secretion were also investigated. 

4.2 Methods 

4.2.1 Human tissue collection and ex vivo secretion experiments 

Human colonic mucosae were obtained and prepared as described in previous sections. The tissue 

pieces were pre-treated with test reagents in a microfuge tube for 15 minutes at room temperature 

before they were transferred to a 96-well plate containing 250 μL pre-warmed Krebs buffer (control) 

or with test reagents for a 15 minute incubation at 37oC in 95%/5% O2/CO2 as previously described. 

High K+ Krebs was used as positive control (in mM, NaCl 68, KCl 74.5, CaCl2 2.6, NaHCO3 4.2, MgCl2 

1.2, NaH2PO4 1.2, HEPES 10, Glucose 5, 1 μM Sitagliptin, 0.1 % BSA). Active GLP-1 and total PYY levels 

were quantitated separately using commercially available ELISA kits as described in previous 

chapters.  

4.2.2 Materials 

Ryngo 1-23, Ryngo 3-37, CR5026A, CR6034B (all obtained from Prof. Phil Robinson, University of 

Sydney), Dynole 34-2 (abcam, ab120463), blebbistatin (Sigma Aldrich, B0560), latrunculin B (Sigma 

Aldrich, L5288) were all dissolved in DMSO at concentrations such that the final concentration of 

DMSO in any working solution did not exceed 0.1%. Stock solutions were stored at -20oC as single-

use aliquots.  

4.2.3 Statistical analysis 

All statistical analysis was conducted as paired analyses, comparing response in tissues obtained 

from the same individual to relevant control conditions. A paired ratio Student’s t-test was used for 

single comparisons. As secretion experiments did not always include a full sequence of all conditions 

used in this study, a paired one-way ANOVA with Fisher Least Significant Difference post-hoc test 

was used for multiple comparisons. Statistical significance was set at p < 0.05. All data are shown as 

mean ± SEM, unless stated otherwise.  
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4.3 Results 

4.3.1 Dynamin activation significantly increased PYY and GLP-1 secretion from 

human colon 

Incubation of human colonic mucosae with 1 μM Ryngo 1-23 significantly triggered GLP-1 and PYY 

release within 15 minutes (Figure 4.3.1: GLP-1: 2.68 ± 0.76 vs 8.62 ± 2.5 ng/mL per g tissue, n = 6, p < 

0.01; PYY: 39.05 ± 4.92 vs 71.83 ± 13.87 ng/mL per g tissue, n = 13, p < 0.05). The concentration 1 

μM was chosen based on in vitro results that showed this concentration was effective in increasing 

catecholamine release from murine chromaffin cells.  
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Figure 4.3.1 1 μM Ryngo 1-23 significantly stimulated (A) GLP-1 (n = 13) and (B) PYY (n = 6) secretion 
from human colonic mucosae. *p < 0.05, **p < 0.01 

4.3.2 The effects of modulating dynamin, actin and myosin activity on PYY 

secretion from human colon 

I next sought to elucidate the underlying mechanism of Ryngo 1-23-induced L cell secretion using a 

range of pharmacological tools. As illustrated in previous chapters, GLP-1 and PYY secretions are 

closely correlated, with PYY being a superior marker for colonic L ell secretion, the following 

experiments only assayed for PYY levels.  

The effect of dynamin inhibition on basal and stimulated PYY secretion was investigated using the 

validated small molecule dynamin inhibitor, Dynole 3-42 (Figure 4.3.2.A). High potassium 

significantly triggered PYY release from basal levels (Control vs 70 mM K+: 35.99 ± 5.26 vs 55.04 ± 

6.91 ng/mL per g tissue, n = 7, p < 0.001). Dynole 3-42 had no effect on basal PYY release (1 μM 
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Dynole 3-42: 40.56 ± 10.73 ng/mL per g tissue, n = 7, p > 0.05 vs control) but significantly attenuated 

high K+-stimulated PYY release (70 mM K+
 + 1 μM Dynole 3-42: 36.19 ± 8.94 ng/mL per g tissue, n = 7, 

p < 0.05 vs 70 mM K+).  

I next sought to investigate the mechanisms underlying Ryngo 1-23-induced PYY secretion. 

Surprisingly, Ryngo 1-23 did not increase PYY secretion from basal levels in the majority of the 

subsequent samples tested, despite the fact that all these samples responded to the positive control 

in this subsequent set of experiment (n = 7 out of 10, data not shown). Only three Ryngo 1-23 

responders were therefore included in this mechanistic analysis relating to actin and myosin in 

dynamin-related L cell secretion. 

There was a trend for Ryngo 1-23 to stimulate PYY secretion from basal level (Figure 4.3.2.B, Control 

vs 1 μM Ryngo 1-23: 23.74 ± 8.7 vs 27.12 ± 12.87 ng/mL per g tissue, n = 3, p = 0.08). Inhibiting actin 

polymerization with 200 nM latrunculin B in the presence of Ryngo 1-23 did not affect PYY release 

(25.49 ± 8.27 ng/mL per g tissue, n = 3, p > 0.05 vs 1 μM Ryngo 1-23), nor did myosin II inhibition 

with blebbistatin (1 μM Ryngo 1-23 + 10 μM Blebbistatin: 22.28 ± 5.70 ng/mL per g tissue, n = 3, p > 

0.05 vs 1 μM Ryngo 1-23).  
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Figure 4.3.2 The effects of inhibiting dynamin and its binding partners on PYY secretion from the 
human colon. (A) Dynamin inhibition with 5 μM Dynole 3-42 significantly attenuated high K+-
stimulated PYY secretion (n = 7 for all groups, *p < 0.05, ***p < 0.001); (B) Inhibition of actin 
polymerization with 200 nM latrunculin B and inhibition of myosin II with 10 μM blebbistatin (n = 3 
for all groups, *p < 0.05). 

4.3.3 The effects of the newer generations of dynamin activators on PYY 

secretion from human colon 

I next tested Ryngo 3-37 (Figure 4.3.3), a new generation of Ryngo compound that is more stable 

than Ryngo 1-23 at physiological temperature (37°C) (Prof. Phil Robinson, unpublished data and 
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personal communication). Ryngo 3-37 had a modest, but significant stimulatory effect on basal PYY 

secretion (Figure 4.3.5.A Control vs 5 μM Ryngo 3-37: 42.34 ± 6.05 vs 49.41 ± 7.44 ng/mL per g 

tissue, n = 13, p < 0.05). Ryngo 3-37 had no effect on high potassium-stimulated PYY secretion (70 

mM K+ vs 70 mM K+ + 5 μM Ryngo 3-37: 67.1 ± 10.24 vs 65.12 ± 13.93 pg/mL per mg tissue, n = 13).  

 

Figure 4.3.3 Chemical structures of Ryngo 1-23 and Ryngo 3-37.  

I finally tested two other newly-developed dynamin activators, CR5026A and CR6034B (Professor 

Phil Robinson, University of Sydney). Both CR5026A and CR6034B have superior stability to the 

original Ryngo compounds (Prof. Phil Robinson, unpublished data and personal communication). 100 

nM CR6034B significantly increased PYY secretion from basal levels (Control vs 100 nM CR6034B: 

61.39 ± 12.01 vs 109.6 ± 35.0 ng/mL per g tissue, n = 5, p < 0.05). There is a trend for Ryngo 1-23, 

CR5026A, and other concentrations of CR6034B to increase PYY secretion from basal levels but these 

did not reach statistical significance for any of the concentrations tested.  
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Figure 4.3.4 The effects of new generation of dynamin activators on PYY secretion from the human 
colon. (A) 5 μM Ryngo 3-37 modestly increased PYY secretion from basal but not with high K+ 

stimulation (n = 13); (B) There is a trend for a new batch of Ryngo 1-23 to increase PYY secretion from 
basal (n = 5). The new generation dynamin activator CR6034B significantly increased PYY secretion 
from basal at 10 nM and 1 μM but increases at 10 μM did not reach statistical significance (n = 5). 
There is also a trend for CR5026A to increase PYY secretion from basal at all concentrations tested (n 
= 5). *p < 0.05, **p < 0.01, ***p < 0.001. 
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4.4 Discussion and conclusion 

Dynamin has emerged as an important regulator of exocytosis1009,1012,1014, in addition to its well-

known role in clathrin-mediated1015 and clathrin-independent endocytosis1016. In this set of 

experiments, I first demonstrated that activating dynamin using Ryngo 1-23 significantly triggered L 

cell secretion. Exposure of human colonic mucosae to the drug for 15 minutes resulted in increased 

PYY and GLP-1 secretion by approximately two- and four-fold, respectively. This stimulatory effect 

was also observed with the new generations of dynamin activators, Ryngo 3-37 and CR6034B, which 

have superior in vitro stability to Ryngo 1-23 (Prof. Phil Robinson, unpublished data and personal 

communication). Moreover, the fact that high-K+ stimulated PYY secretion is inhibited by Dynole 34-

2, which inhibits dynamin GTPase activity, further supports the role of dynamin in regulating L cell 

secretion from human colonic mucosae. This is consistent with my original hypothesis and previous 

work from our laboratory, which clearly showed that the activation of dynamin significantly 

augments stimulated catecholamine release from murine adrenal chromaffin cells1012. However, one 

major limitation with the ex vivo static incubation approach is that it could not determine whether 

Ryngo 1-23 directly acts on L cells. Immunohistochemistry should be performed in subsequent 

studies to determine if L cells express dynamin 1 or other dynamin isoforms. Testing the effects of 

dynamin modulators on cell lines such as GLUTag, or FACS-purified murine L cells, would be 

informative.  

Although dynamin is crucial in clarthrin-mediated endocytosis1004, it is unlikely that Ryngo 1-23 

increased L cell secretion by promoting vesicle recycling as dynamin activation by Ryngo 1-23 does 

not affect clarthrin-mediated endocytosis1017. Ryngo 1-23 promotes dynamin oligomerization and 

thus, stimulates its GTPase activity1018, which stabilizes the fusion pore1009 and slows fusion pore 

expansion1012. As such, the fusion pore is thought to be opened for longer, promoting the increased 

expulsion of vesicular contents into the extracellular space and thus, increased quantal release of L 

cell hormones1012. This notion is supported by the observation that dynamin activation with Ryngo 1-

23 increases the amount of transmitter release per exocytotic event in murine adrenal chromaffin 

cells without affecting the frequency of these events, indicating a shift from “kiss and run” 

events1012, a mode of exocytosis in which the secretory vesicle temporarily fuses with the target 

plasma membrane to release a small portion of its content before it is retrieved into the 

cytoplasm1019, to full fusion. Such effects of dynamin activation are likely to be involved in Ryngo 1-

23-induced GLP-1 and PYY secretion at basal conditions. Notably, although dynamin activation 

markedly stabilizes the opening of the fusion pore1012, its effect on fusion pore size remains 

unknown. Fusion pore size is one of the parameters that can affect the amount of vesicular content 

released during an exocytotic event. Indeed, a smaller fusion pore size has been postulated to 



 

104 
 

underlie the difference in quantal release in enterochromaffin cells and adrenal chromaffin cells993. 

Fusion pore size in enterochromaffin cells is considerably smaller than that of adrenal chromaffin 

cells993 and enterochromaffin cells release 70 times less transmitter per exocytotic event109. It is 

possible for dynamin activation to result in increased fusion pore size and thus, increases hormone 

release. 

Contrasting the findings in murine adrenal chromaffin cells1012, dynamin activation had no effect on 

high-K+ stimulated PYY release from human colonic mucosal preparations. Such disparity is likely 

attributed to experimental approaches used to measure the effect of dynamin activation on 

hormone release. In previous chromaffin cell experiments, the duration of high K+ stimulation was 

limited to 60 seconds1012. In contrast, a 15-minute static incubation was used in this current study, 

which would maximally stimulate cells over the course of incubation. As the maximal stimulation 

was achieved with high K+ stimulation alone, it is unlikely for any positive regulators of the secretory 

process, such as dynamin activation, to exert any further effects on secretion. As maximal GLP-1 

secretion invoked by high K+ from perfused rat small intestine was achieved after 5 minutes and 

prolonged perfusion of the high K+ solution did not further increase GLP-1 secretion733, future 

experiments investigating the effect of Ryngo 1-23 on stimulated PYY secretion should be carried out 

with an incubation time under 5 minutes. It is also worth noting that L cells have a relatively high 

amount of secretion at baseline compared to chromaffin cells, and that the size of the respective 

vesicle contents being measured are vastly different. Small signalling molecules such as 

catecholamines are able to escape through a small, transiently flickering fusion pore, while the 

release of larger peptides require expanded fusion pores1020. To allow the relatively large peptide 

hormones PYY and GLP-1 to escape from secretory vesicles, expanded fusion pore width must be 

occurring in L cells at basal conditions, which could be induced by dynamin activators. During high 

K+-stimulation, full fusion events dominate and thus, fusion pore expansion occurs regardless of the 

presence of dynamin activators, dwarfing any potential fusion pore expanding effects of dynamin 

activators. 

Dynamin inhibition with Dynole 34-2 had no effect on basal PYY secretion but significantly 

attenuated high K+-stimulated PYY secretion. Dynole 34-2 inhibits dynamin by inhibiting its GTPase 

activity1021 and unlike Ryngo 1-23, exerts potent inhibitory effects on clathrin-mediated 

endocytosis1017,1021. It remains to be determined how much of this attenuation is attributed to 

impaired vesicle recycling and how much is due to its effects on fusion pore dynamics. Dynole 34-2 

treatment significantly attenuated catecholamine release from high K+-stimulated murine adrenal 

chromaffin cells by reducing the number of exocytotic events and quantal release per event1012. The 

former could be attributed to impaired vesicle recycling but the latter is likely accounted for by 
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changes in fusion pore dynamics. Therefore, it is plausible that Dynole 34-2 inhibits stimulated PYY 

release from human colon in a similar fashion. 

The role of actin in mediating exocytosis has been widely studied. Trafficking of secretory vesicles 

from the reserve pool towards the plasma membrane is dependent on an intact actin cytoskeletal 

network. Exocytosis requires the partial depolymerization of the cortical actin network to enable the 

secretory vesicles that are “trapped” within the cortical actin meshwork to translocate towards the 

target plasma membrane1022-1024. Disruption of actin polymerization with cytochalasin D has been 

demonstrated to augment exocytosis1025 while latrunculin B-induced F-actin depolymerization 

significantly increased insulin-induced GLP-1 secretion in GLUTag and NCI-H716 cells1026. However, 

emerging evidence supports a more dynamic role for actin in mediating exocytosis, in a dynamin-

dependent manner1027. Contrary to its role in vesicle trafficking, it appears fusion pore expansion 

requires de novo polymerization of actin monomers1028,1029, which is promoted by dynamin 

oligomerization. Conversely, F-actin polymerization also enhances dynamin oligomerization1018,1030. 

Indeed, inhibition of actin polymerization with cytochalasin B or latrunculin B completely abolished 

the effect of Ryngo 1-23 in augmenting catecholamine release from murine adrenal chromaffin 

cells1012. Thus, I sought to investigate whether interfering actin polymerization with latrunculin B 

would affect PYY secretion from human colonic mucosae. Although I did not observe any impact of 

latrunculin B treatment on basal PYY secretion in the presence of Ryngo 1-23, the role of actin-

dynamin interaction in L cell exocytosis should not be discounted as the current study is very 

underpowered due to the low small number of Ryngo 1-23 responder. Disruption of de novo F-actin 

polymerization could contribute to destabilization of the fusion pore, which would oppose the fusion 

pore-stabilizing effect of dynamin activation. Indeed, Latrunculin B has been demonstrated to 

promote fusion pore closure in pancreatic acinar cells1031. Further studies are warranted to 

investigate how is the actin-dynamin interaction implicated in L cell hormone release.   

The motor protein myosin II is a major binding partner of actin and its role in vesicle translocation 

along the actin cytoskeleton is well established. Disruption of myosin II function markedly reduce 

vesicle mobility and thus severely compromise the replenishment of vesicles in the readily releasable 

pool1032,1033. There is now an increasing appreciation for its role in controlling fusion pore 

dynamics1034-1036, in addition to its well established role in vesicle trafficking. However,  the present 

study is hugely underpowered to detect any effect of myosin II inhibition on Ryngo 1-23 induced PYY 

secretion. Results from the three Ryngo 1-23 responders suggest myosin II could be implicated as 

Ryngo-induced PYY release shows a trend to be reduced by blebbstatin. Upon membrane fusion, an 

actin-myosin II complex forms a coat around the fused vesicle to aid the expulsion of granule 

content into the extracellular space1037,1038, although such mechanism may not relevant to all 
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secretory systems. For example, blebbistatin did not reduce quantal release per exocytotic event of 

catecholamines from adrenal chromaffin cells1036 and serotonin from thrombin-stimulated 

platelets1039. Nonetheless, the function of actin-myosin coating is likely to be more relevant for high 

molecular weight vesicular cargoes, or larger vesicles1027 where diffusion alone may not be sufficient 

for the released transmitter/hormone molecules to have diffused far enough away from the 

secreting cell before they are recaptured by rapid endocytosis following exocytosis. Results from a 

recent study using the Gcg-Venus transgenic mouse model suggests that compound exocytosis is the 

predominant mode of exocytosis in primary murine L cells997. In this mode of exocytosis, secretory 

vesicles fuse with another vesicle that is already fused with the plasma membrane (although fusion 

of multiple vesicles intracellularly has also been described)1040. Thus, the size of secretory vesicles in 

L cells is likely to be larger than those of chromaffin cells, despite comparable size prior to any fusion 

events107,1041,1042. Coupled with the fact that large peptides diffuse much more slowly than small 

molecules such as adrenaline or serotonin, expulsion of PYY and GLP-1 from L cell secretory granules 

may require additional mechanical force from the actin-myosin II complex. Indeed, the actin-myosin 

II complex has been implicated in the secretion of tear proteins from lacrimal acinar epithelial cells, a 

process that is also predominated by compound exocytosis1038.  

L cell hormones play important roles in maintaining metabolic homeostasis. The fact that dynamin 

activation by Ryngo 1-23 significantly increases L cell secretion makes it an attractive candidate for 

potential clinical development as treatment for diabetes and obesity. However, this prospect is 

significantly hampered by the susceptibility of Ryngo 1-23 to degradation in solution at physiological 

temperature (Prof. Phil Robinson, unpublished data and personal communication). Nonetheless, 

new generations of dynamin activators with improved stability profiles have been developed to 

overcome this problem. Crucially, the stimulatory effects on L cell were preserved in these new 

dynamin activators. Ryngo 3-37, a new generation dynamin activator, modestly increased basal PYY 

secretion. I also showed that CRs, which belong to the newest generation of dynamin activators that 

have even better stability than Ryngo 3-37, tended to increase basal PYY secretion. However, as the 

heterogeneity nature of human specimens significantly increases the sample size required to attain 

adequate statistical power, follow up experiments with larger sample sizes should be undertaken to 

confirm these findings. If these compounds are found to reliably trigger L cell secretion, subsequent 

in vivo testing of these drugs can be carried out in rodent models of obesity and diabetes to 

investigate if dynamin activation is beneficial in correcting dysregulated metabolism. Such in vivo 

experiments would also provide valuable insights into potential off-target effects of dynamin 

activation, such as its effect on the secretion of other gut hormones. While preliminary data from 

our laboratory suggests that serotonin secretion by enterochromaffin cells is not affected by 
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dynamin activation (Keating et al., unpublished data), its effect on other enteroendocrine cell types 

is unknown.   

In summary, this study demonstrated that dynamin activation could increase L cell hormone release 

and actin and myosin II are likely to be implicated in the process. However, the precise roles of these 

proteins in regulating L cell exocytosis warrants further investigations as the current study is vastly 

underpowered.   
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5 Gut-derived glucagon in human  

5.1 Introduction 

Fully-processed glucagon has recently been detected in the plasma of pancreatectomized patients 

and such extra-pancreatic source(s) of glucagon could only be triggered by enteral, but not 

parenteral glucose463. Results from this study, combined with early findings of glucagon-like 

immunoreactivity in the human gut epithelium1043-1045, suggest that the intestinal epithelium is a 

source of glucagon that is identical to that of pancreatic origin. However, due to the high degree of 

structural similarities between glucagon and other proglucagon-derived peptides (PGDPs) produced 

by enteroendocrine L cells, concerns over the specificity of immunochemical detection methods 

such as radioimmunoassays (RIAs) and ELISAs have recently been raised1046. This is problematic as 

oral glucose is a strong stimulus for the secretion of an array of PGDPs that includes oxyntomodulin 

(OXM)432, which not only contains the entire sequence of glucagon but also shares the same N-

terminus. Several studies showed that commercially available glucagon ELISA and RIA kits suffer 

from marked cross-reactivity with oxyntomodulin and various forms of glicentin481,1046-1048. In fact, 

the initial findings of the LIBRA trial1049 could not be replicated when the same samples were re-

analyzed using a different glucagon ELISA assay from the original study, both of which are 

commercially available1050, thus highlighting the technical difficulties of reliably measuring glucagon 

levels and its implications. Therefore, immunochemical approaches alone are insufficient to confirm 

the presence of fully-processed glucagon in the gut as the abundance of these cross-reacting species 

in gut epithelial tissue lysates may be higher than that of glucagon by several orders of magnitude.  

A mass spectrometry (MS)-based approach can circumvent the issue of antibody specificity as the 

peptide is identified based on its amino acid sequence, rather than the structure of specific epitopes. 

Thus, structural similarities between closely related peptides do not interfere with peptide 

detection. However, detection of glucagon using MS is not without major obstacles. The challenges 

of glucagon detection and quantitation in complex samples employing a peptidomic-based approach 

has long been acknowledged as sensitivity of instrumentation and the problem of dynamic range 

markedly hinders detection of low abundance peptides such as glucagon1051. Sample preparation for 

MS-based analysis of glucagon is complicated by the peptide’s poor aqueous solubility at 

physiological pH and susceptibility to degradation extreme pHs1052,1053. The fact that both glicentin 

and oxyntomdulin contain the full 29-amino acid sequence of glucagon renders it a poor candidate 

for peptidase digestion upstream of MS detection. Furthermore, ionization of the glucagon peptide 

typically results in at least three molecular ion species1054, which further reduces sensitivity of MS-
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based methods. Notably, upstream immunoenrichment has been shown to considerably enhance 

the sensitivity of MS-based assays1055. Indeed, a MS-based glucagon assay for analyzing plasma 

samples was recently developed using such an approach1056. Therefore, the first aim of this study 

was to detect the presence of glucagon from the human gut epithelial extract, a considerably more 

complex sample than plasma, using a MS-based method with the aid of immunoenrichment.  

The second aim of this study was to investigate what triggers the secretion of glucagon from the gut. 

Since the release of extra-pancreatic glucagon in pancreatectomized patients is triggered by the 

enteral, but not parenteral glucose463, I hypothesize that the gut epithelium is a source of glucagon 

and its release can be triggered by exposure to high glucose. Moreover, since amino acids are potent 

stimuli for glucagon secretion1057,1058, I hypothesize that the amino acid, arginine, could trigger the 

release of glucagon from the gut.  

5.2 Materials and methods 

5.2.1 Materials 

Acetonitrile, pure formic acid and 0.1% formic acid, all MS-grade, were purchased from Sigma 

Aldrich. Sitagliptin was provided by Pfizer Inc. Recombinant human glucagon (Glucagen®, Novo 

Nordisk) was purchased from Flinders Medical Centre pharmacy, reconstituted in deionized water to 

make 1 mg/mL stock and stored in aliquots at -20°C. Oxyntomodulin (OXM) was purchased from 

Phoenix Peptides (Catalogue no. 028-22). 

5.2.2 Human tissue collection 

Consented surgical specimens were obtained from the Flinders Medical Centre and Flinders Private 

Hospital colorectal unit. Ileum and colon specimens were collected from patients undergoing bowel 

resection for cancer or stoma reversal. In the case of resection specimens, samples were obtained 

from sites there were at least 10 cm away from tumour location. Specimens from patients that had 

any form of inflammatory bowel diseases were excluded from this study. The specimens were 

immediately placed in iced-cold Krebs buffer and transported to the laboratory for dissection within 

15 minutes as described previously. The specimens were rinsed with iced-cold Krebs buffer to 

remove any luminal contents and blood clots and dissected clear of adipose, muscular and 

connective tissue. The mucosae were separated from the submucosae with stainless steel spring 

scissors, cut into pieces of approximately 80 - 100 mg for secretion studies or snap frozen in liquid 

nitrogen and stored at -80°C until analysis.  
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5.2.3 Sample preparation for LC-MS 

The sample preparation procedure was adapted from the methods reported by Kuhre et al.241. Snap 

frozen tissue was weighed and transferred to a 2 mL Eppendorf SafeLock tube (Eppendorf, 

Germany), to which lysis buffer (1 % formic acid, supplemented with 100 μM sitagliptin and 1:100 

protease inhibitor cocktail (T8340, Sigma Aldrich)) was added at a ratio of 1 mL/100 mg tissue. The 

tissue was homogenized using a 5 mm stainless steel bead and bead mill (TissueLyzer, Qiagen) at 30 

Hz for 20 minutes. The lysate was left to stand at room temperature (RT) for 1 hour before it was 

centrifuged to remove debris (3300 x g for 15 minutes at RT) and the pH of the supernatant was 

adjusted to pH 3 with NaOH. 300 µL of the pH-adjusted supernatant was added to commercially 

available ELISA plate pre-coated with monoclonal antibody directed at the N-terminus of glucagon 

(10-1271-01, Mercodia), left to incubate at RT overnight on a plate shaker at 600 rpm. The 

supernatants were subsequently aspirated and the wells washed three times with 1X PBS (Life 

Technologies). Bound peptides were eluted by adding 100 µL of 70 % acetonitrile in 0.1 % formic 

acid incubated at RT for 15 minutes on a plate shaker at 600 rpm. The eluents were then transferred 

to MS autosampler vials (Thermo Pierce) and the ACN was completely evaporated in a vacuum 

concentrator (Martin Christ, RVC2-33). The samples were then placed into the autosampler for LC-

MS analysis.  

5.2.4 Liquid chromatography-mass spectrometry (LC-MS) 

Analysis of peptides was carried out using a TripleTOF™ 5600+ mass spectrometer (AB Sciex) coupled 

to an Eksigent nanoLC 400 nano HPLC. Samples were applied to a 10mm x 300 µm ProteCol™ trap 

column (C18, 120 Å 3 µm, SGE Analytical Science) and eluted onto a 15 cm C18 120 Å 5 µm analytical 

column (Nikkyos Technos) using a 2 to 40% acetonitrile gradient over 42 min. The instrument was 

operated in high sensitivity positive ion mode, employing dynamic accumulation and rolling collision 

energy. MS scans covering the 350 to 1600 m/z mass range were performed using a 50 ms 

accumulation time. MS/MS scans were performed employing a 150 ms maximum accumulation time 

over a mass range of 100 to 1500 m/z. Ions were selected for fragmentation via the following 

criteria: charge state > 2; intensity > 400 counts per second (cps); mass tolerance 20 mDa. LC-MS 

results were searched against human Uniprot database using ProteinPilot 4.0 (AB Sciex) with a no-

digest setting.  

5.2.5 Secretion experiments: 

Mucosal pieces were incubated with 200 μL of buffer (control) or buffer containing test agents in a 

24-well plate for 15 minutes. The buffer was a modified Krebs buffer described previously with the 

addition of sitagliptin 1 μM and 0.1 % BSA (A1595, Sigma Aldrich, Australia) at pH 7.4. Following 
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incubation at 37°C in 95% O2/5% CO2, supernatants were collected and stored in aliquots at -20°C. 

Glucagon levels were quantitated using a validated commercially available sandwich ELISA, 

according to manufacturer’s instructions (10-1271-01, Mercodia, Uppsala, Sweden). Oxyntomodulin 

levels were quantitated using a prototype sandwich ELISA432 (Mercodia, Uppsala, Sweden) by Dr. 

Nicolai Wewer Albrechtsen at the University of Copenhagen, Denmark.  

5.2.6 Statistical analysis: 

All statistical analysis was conducted as paired analyses, comparing responses in tissues obtained 

from the same individual. A paired-ratio Student’s t-test was used for single comparisons. Statistical 

significance was p < 0.05. All data are shown as mean ± SEM. 

5.3 Results 

5.3.1 LC-MS analysis of recombinant glucagon 

200 μM recombinant human glucagon was subjected to LC-MS and the elution time of glucagon 

using this gradient was 55.94 min. Electrospray ionization produced three distinct ion species (Figure 

5.3.1.A): [M+5H+]5+ of 697.1 m/z, [M+4H+]4+ of 871.1 m/z and [M+3H+]3+ of 1161.1 m/z. Further 

fragmentation of all three parent ion species were achieved and produced sufficient fragment ions 

(Figure 5.3.1.B,C). The MS-MS spectra of these fragment ions were analysed the Analyst software. 

Detected peptide fragments generated from the 4-charge parent ion ([M+4H+]4+) is depicted in 

Figure 5.3.1.D. These results indicate that the intact glucagon can be adequately ionized and 

satisfactory fragmentations can be achieved without upstream enzyme digestion.  

5.3.2 Fully-processed glucagon in human ileal mucosal lysate was detected by 

LC-MS  

A very low level of glucagon was detected in the immune-enriched human ileal mucosal extract, as 

indicated by the low intensity. Due to a much higher sample complexity, glucagon in the extract 

eluted later at 58.1 minute (Figure 5.3.2.A). Only 2 ion species ([M+5H+]5+ and [M+4H+]4+) were 

reliably detected (Figure 5.3.2.B and C, respectively). Of the two parent ions, only the 5-charge ion 

was fragmented in subsequent MS/MS experiment (Figure 5.3.2.D). Initial analysis using the Analyst® 

software identified 9 peptide fragments that matched the glucagon sequence (Figure 5.3.2.E, m/z of 

these fragment ions are indicated in bold red). Subsequent analysis using the ProteinPilot® software 

identified 11 more peptide fragments that matched to glucagon, providing a total sequence 

coverage of 69%.  
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5.3.3 Glucagon is released from ex vivo preparations of human ileal and colonic 

epithelia 

Glucagon was readily detectable in ex vivo secretion assay supernatants from human ileal epithelia 

at basal levels but its release did not appear to be triggered by any of the stimulants tested (Figure 

5.3.3.A). Glucagon release from human colonic epithelia was detectable at basal (Figure 5.3.3.B, 

Control: 0.611 ± 0.17 ng/mL/g tissue, n = 8) and was reliably triggered by IBMX/FSK (IBMX/FSK: 1.30 

± 0.55 ng/mL/g tissue, n = 8, p < 0.05), high potassium (70 mM K+: 0.85 ± 0.17 ng/mL/g tissue, n = 8, 

p < 0.05) and arginine (20 mM Arg: 1.74 ± 0.46 ng/mL/g tissue, n = 6, p < 0.05). However, glucagon 

was not detectable in any of the colonic preparations that were collected from specimens proximal 

to the sigmoid colon (data not shown).  
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Figure 5.3.3 In initial experiments, glucagon was readily detectable in secretion assay supertants 
from human ileal (A) and sigmoid colonic (B) epithelial preparations (*p < 0.05 vs control). 

5.3.4 Glucagon immunoreactivity in secretion is not due to cross-reactivity with 

oxyntomodulin 

Several studies reported the true cross-reactivity of the Mercodia glucagon sandwich ELISA with 

oxyntomodulin is considerably higher than the reported value of <4.4% by the manufacturer481,1048. 

Thus, it was pertinent to verify the fidelity of the ELISA in my hands. At concentrations below 100 

pM, the cross-reactivity of the ELISA with OXM was 5.4%, which is similar to that reported by the 

manufacturer. However, at 1 nM, the cross-reactivity was much higher at 12.5% (Figure 5.3.4.A), 

which is similar to that reported by others481,1048. Therefore, in order to confirm glucagon detected 

by the Mercodia sandwich ELISA was not due to potential cross-reactivity with OXM 20 samples 
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(basal and arginine-stimulated) were assayed for their OXM content using an OXM sandwich 

ELISA432. OXM concentrations in all samples tested were less than 20 pM. As 20 pM OXM could, at 

most, only account for 2.5 pM of detected glucagon, assuming cross-reactivity is 12.5% (likely to be 

an overestimate for concentrations less than 100 pM), OXM in these samples could not account for 

the majority of the detected glucagon immunoreactivity (Figure 5.3.4.B).  
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Figure 5.3.4 (A) Cross-reactivity curve for oxyntomodulin (OXM) for Mercodia glucagon sandwich 
ELISA (n = 3); (B) Glucagon and OXM concentrations in 20 individual samples. 

5.3.5 Glucose and arginine stimulate glucagon release from human ileal epithelia 

The lack of stimulated glucagon response from ileal preparations was of huge contrast to that of 

colonic preparations, which gave remarkably consistent responses. Such differences prompted me to 

question if the lack of response from ileal preparations was due to sample preparation. The mucosa 

can be easily isolated as an intact sheet from colonic specimens using a stainless-steel spatula in a 

scraping motion. However, due to the presence of villi on ileal mucosa, the tissue integrity of ileal 

preparations was significantly compromised when the same technique was employed. Thus, in order 

to preserve tissue integrity, the mucosa was very carefully dissected from the rest of the specimen 

using sharp spring scissors instead of being scraped off with a spatula. Nutrient-stimulated 

experiments were then repeated on samples prepared using this new approach. Arginine 

significantly triggered glucagon secretion in these preparations (Figure 5.3.5.A: Control vs 20 mM 

Arg: 0.19 ± 0.03 ng/mL/g tissue vs 0.47 ± 0.10 ng/mL/g tissue, n = 12, p < 0.0001). Exposure to 300 

mM glucose also significantly increased glucagon release (Figure 5.3.5.B: Control vs 300 mM glucose: 

0.31 ± 0.09 ng/mL/g tissue vs 0.90 ± 0.14 ng/mL/g tissue, n = 9, p < 0.001) but 20 mM did not 

significantly trigger release (20 mM glucose: 0.30 ± 0.05 ng/mL/g tissue, n = 9). 
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Figure 5.3.5 Nutrient-induced glucagon secretion from human ileal epithelia. (A) 20 mM Arginine 
significantly triggered glucagon secretio. (B) Glucose significantly triggered glucagon secretion at 300 
mM (***p < 0.001 vs control, n = 9) but not at 20 mM (##p < 0.01 vs 300 mM glucose, n = 9). 

5.3.6 Glucose-induced glucagon secretion is not attenuated by SGLT1 inhibition, 

KATP channel opening or somatostatin 

Since the glucose transporter SGLT1 and KATP channels are both implicated in glucose-induced GLP-1 

secretion252,733, I sought to investigate if these pathways are also responsible for glucose-induced 

glucagon secretion in the human ileum. 300 mM glucose significantly increased glucagon secretion 

(Figure 5.3.6.A: Control vs 300 mM glucose: 0.15 ± 0.03 ng/mL/g tissue vs 0.31 ± 0.04 ng/mL/g tissue, 

n = 7, p < 0.01) but neither SGLT1 blockade with phlorizin (1 mM phlorizin: 0.36 ± 0.05 ng/mL/g 

tissue, n = 7, p  < 0.01 vs control) or KATP channel opening with diazoxide (500 μM diazoxide: 0.46 ± 

0.06 ng/mL/g tissue, n = 7, p < 0.001 vs control) attenuated glucose-induced glucagon secretion. As it 

has been postulated that glucose-induced glucagon suppression within pancreatic islets is mediated 

by somatostatin1059, I investigated if a 15-minute pre-treatment with somatostatin would attenuate 

glucose-induced glucagon secretion from the ex vivo ileal epithelial preparations. High glucose 

significantly triggered glucagon secretion (Figure 5.3.6.B: Control vs 300 mM glucose: 0.05 ± 0.01 

ng/mL/g tissue vs 0.38 ± 0.15 ng/mL/g tissue, n = 5, p < 0.05) and this response was not blocked by 

somatostatin (10 nM somatostatin: 0.25 ± 0.13 ng/mL/g tissue, n = 5, p < 0.05 vs control).  
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Figure 5.3.6 Glucose-sensing mechanisms of glucagon-secreting cells in human ileal epithelia. (A) 
Glucose-induced glucagon secretion was not attenuated by the SGLT1 inhibitor, Phlorizin or the KATP 
channel open, diazoxide. (B) Somatostatin did not attenuate glucose-induced glucagon secretion. 

5.3.7 Glucagon secretion is correlated with GLP-1, but not oxyntomodulin 

secretion from human ileal epithelia 

While there is a strong positive correlation between the glucagon and GLP-1 secretions within the 

same sample, at baseline and upon stimulation (Figure 5.3.7.A), such a correlation does not exist 

between glucagon and OXM concentrations (Figure 5.3.7.B), although this could be due to the small 

number of samples that were assayed for their OXM contents. Nonetheless, contrary to the 

stimulatory effect of arginine on glucagon secretion, 20 mM arginine significantly attenuated OXM 

secretion (Figure 5.3.7.C: Control vs 20 mM Arginine: 0.27 ± 0.08 ng/mL/g tissue vs 0.04 ± 0.01 

ng/mL/g tissue, n = 5, p < 0.01).  
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Figure 5.3.7 Correlation of glucagon concentration with other L cell products (A) GLP-1 and (B) OXM. 
(C) Arginine significantly reduced ileal OXM secretion from basal levels. 
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5.4 Discussion and Conclusion 

5.4.1 The human gut epithelium is a source of fully-processed glucagon 

The observation that the release of glucagon was triggered by enteral, but not parenteral glucose in 

pancreatectomized patients457,463 strongly suggests that the gut could be a source of extra-pancreatic 

glucagon, or that gut-based mechanisms regulate the release of extra-pancreatic glucagon in these 

patients. As such, I hypothesized that the human gut epithelium is a source of fully-processed 

glucagon. Results from the first part of the current study are the first to provide mass-spectrometry 

evidence to confirm the long-standing speculation that the human small intestine epithelium is a 

source of fully processed glucagon, which is consistent with my original hypothesis. While the 

presence of glucagon-like immunoreactivity in the human epithelium was reported more than three 

decades ago1043-1045, peptide immunochemical detection is based on epitope structure, rather than 

the amino acid sequence of the peptide, as in MS-based approaches. The gut epithelium is a rich 

source of glicentin and oxyntomodulin, both of which contain the full sequence of glucagon, and 

thus, the identical epitopes as glucagon, which could give rise to considerable glucagon-

immunoreactivity. Although glucagon was detected in the plasmas of pancreatectomized patients 

using MS463, the authors could not conclude that the gut epithelium was the source of extra-

pancreatic glucagon as they were not able to detect glucagon in endoscopic biopsies of the small 

intestine using MS despite extensive effort (personal communication, Prof. Filip Knop and Dr. Nicolai 

Wewer Alberchtsen). As I was able to detect glucagon from terminal ileum specimens, it is likely that 

glucagon-secreting cells reside in the distal small intestine, rather than the proximal small intestine, 

from which these endoscopic biopsies were obtained (personal communication, Prof. Filip Knop).  

To date, the presence of extra-pancreatic glucagon is only demonstrated in pancreatectomized 

patients463, which in itself is an extreme physiological model and raises the important question of 

whether extra-pancreatic glucagon is present under normal physiological conditions or only arises 

upon complete elimination of pancreatic α cells as a compensatory response. The fact that none of 

the specimens used in this study were from pancreatectomized patients and glucagon was reliably 

detected from secretion supernatants of ileal and colonic mucosal preparations strongly supports 

the former notion.  

In the second part of the study, I first demonstrated glucagon is released from the human gut 

epithelia. Importantly, the main cross-reacting species, oxyntomodulin, was present at 

concentrations that would not be sufficient to account for most of the glucagon-immunoreactivity in 

the samples quantitated, which adds confidence that the results obtained from the assay reflect the 

true concentrations of glucagon in the samples. I then established that glucagon secretion could be 
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reliably triggered by high glucose and arginine from human ileal mucosae. I also showed that 

glucagon is released from the distal colon in response to high potassium, arginine and the 

combination of IBMX/FSK.  

5.4.2 Glucose-induced glucagon secretion 

The fact that glucagon is triggered by glucose at concentrations that resemble postprandial luminal, 

but not vascular, glucose levels indicates that the glucose-sensing machinery of glucagon-secreting 

cells is likely to be localized to the apical membrane, resembling that of enteroendocrine L cells, 

which also express GCG. This finding is in agreement with an in vivo report, which demonstrated that 

only oral glucose, but not intravenous glucose, could trigger glucagon secretion in 

pancreatectomized patients463. The current finding could also potentially explain the highly 

prevalent, although often underappreciated, paradoxical phenomenon of postprandial 

hyperglucagonaemia in gastric-bypass patients87,257,313,475,1060-1065. Anatomical rearrangement of the 

GI tract that increases the delivery of nutrients to the L cell-rich proximal small intestine following 

meal ingestion stimulates near-pharmacological levels of GLP-1 secretion19,20, which would result in 

intra-islet hyperinsulinaemia. As both insulin1066-1070 and GLP-187,298,326 inhibit glucagon secretion, 

postprandial hyperglucagonaemia due to the hypersecretion of glucagon by pancreatic α cells 

becomes difficult to reconcile in the presence of these glucagonostatic forces. Instead, the presence 

of glucagon-secreting cells in the distal small intestine would secrete glucagon in response to 

nutrient exposure, in a similar manner to that of incretin-secreting cells, potentially provides a 

logical explanation. The fact that high glucose could trigger the release of glucagon from the gut 

could also adequately explain the observation that oral glucose is less potent in suppressing 

glucagon secretion than parenteral glucose in isoglycaemic infusion experiments1071. Hyperglycaemia 

induced by parenteral glucose potently suppresses glucagon secretion from pancreatic α cells 

without affecting glucagon-secreting cells in the gut, resulting in net reduction in glucagon levels. On 

the other hand, oral glucose has opposing effects on α cells and glucagon-secreting cells in the gut: 

hyperglycaemia induced by oral glucose suppresses α cell secretion but luminal glucose exposure 

stimulates glucagon release from the gut, resulting in an overall reduced magnitude of glucagon 

suppression. In fact, in healthy individuals, if the oral glucose load is sufficiently large, glucagon 

levels actually increase478.   

As SGLT1 and KATP channels are both implicated in glucose-induced GLP-1 secretion from L cells and 

glucose-induced glucagon suppression from pancreatic α cells, I sought to investigate if glucagon 

secretion from the human ileum shares these similar pathways. Surprisingly, neither inhibition of 

SGLT1 and SGLT2 with phlorizin, nor KATP channel opening with diazoxide, attenuated glucose-

induced glucagon secretion from the ileum. Such an observation indicates that it is highly unlikely 
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that glucagon and GLP-1 originates from the same population of enteroendocrine cells. Therefore, it 

seems likely that PC1/3 and PC2 are differentially expressed in distinct populations of GCG-

expressing enteroendocrine cells, with the former releasing GLP-1 and the latter releasing glucagon 

in response to glucose stimulation.  

Two recent clinical case studies reported that somatostatin treatment improved glycaemic control 

and importantly, markedly attenuated glucagon secretion, in two pancreatectomized 

patients1072,1073. This suggests somatostatin could regulate the release of extra-pancreatic glucagon, 

in addition to tonically inhibiting GLP-1 release L cells via somatostatin subtype-5 receptor148,1074. I 

therefore investigated if somatostatin treatment could attenuate glucose-induced glucagon 

secretion from the gut. Contrary to these clinical observations, somatostatin had no significant 

impact on glucose-induced glucagon secretion from the human ileal mucosal preparations. However, 

since somatostatin receptors are expressed by enteric neurons1075, it is possible that somatostatin 

regulates glucagon secretion indirectly via neural pathways, which were not present in my ex vivo 

preparation.  

Since the molar quantity of glucagon released from the gut is remarkably lower than GLP-1 (Fig. 

5.4.5 A), the amount of tissue required for glucagon detection in each experimental setup was 

substantially greater, which markedly limited the number of inhibitors I could test on each specimen. 

While I demonstrated in a previous chapter that glucose-induced GLP-1 secretion is not caused by 

osmotic stress, it remains to be determined if glucose-induced glucagon secretion is osmotically 

driven. In addition, as I, and others733,769, have demonstrated that the facilitative glucose transporter, 

GLUT2, plays a pivotal role in glucose-induced GLP-1 secretion, and that GLUT1 is implicated in 

glucose-sensing in α cells1076, the role of glucose transporters in mediating glucose-induced glucagon 

secretion in the gut needs to be investigated. Moreover, although KATP channel did not appear to 

mediate the stimulatory effects of glucose on glucagon secretion from the ileum, the importance of 

glucose metabolism warrants further investigation as there is evidence supporting the role of 

glucokinase1077 and sacroplasmatic reticulum Ca2+
 ATPase1078 in mediating glucose-sensing in α cells, 

which could also be present in glucagon-secreting cells in the gut. While the expression of sweet 

taste receptors has not been reported in α cells, both pancreatic β cells1079,1080 and enteroendocrine 

L cells697,770 express functional sweet taste receptors. Therefore, it is possible that glucagon-secreting 

cells in the gut sense glucose via sweet taste receptors. There is also the possibility that glucose 

triggers glucagon secretion from the gut indirectly via the paracrine action of other hormones such 

as GLP-1 and GLP-2. However, the fact that glucose-induced glucagon secretion was not attenuated 

by phlorizin or diazoxide strongly refutes such a possibility, as these same compounds significantly 

dampen glucose-induced GLP-1 release.  
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5.4.3 Arginine-induced glucagon secretion 

Glucagon is a critical regulator of amino acid metabolism471,1081 and conversely, amino acids are 

potent α cell secretagogues1082,1083. Thus, I sought to determine if the amino acids also stimulate the 

secretion of glucagon from the gut epithelium. Arginine was chosen as it has been used extensively 

both in vitro and clinically to assess α cell function458,1057,1067,1082,1084, a concentration of 20 mM was 

chosen based on that used for static incubation experiments in islets1085 and pancreas perfusion 

experiments1086. I established that arginine is capable of triggering glucagon secretion from ileal and 

colonic epithelia, similar to that from pancreatic α cells. While it is beyond the scope of this study to 

elucidate the underlying mechanisms, it is not unreasonable to speculate that significant overlaps 

may exist between the amino acid sensing mechanisms in glucagon-secreting cells, other 

enteroendocrine cells and islet cells. Amino acid-induced exocytosis in enteroendocrine L cells708 and 

pancreatic α and β cells1087,1088 is believed to be primarily driven by electrogenic transport via amino 

transporters in the solute carrier gene superfamily. Interestingly, glutamine elevates intracellular 

cAMP and evoke a calcium response in L cells in the absence of extracellular Na+ or Ca2+, which 

suggests GPCR-mediated pathways could supplement the predominantly electrogenic response708. 

The identities of such GPCRs remain elusive and could well differ between different populations of 

enteroendocrine cells. It is possible that similar mechanisms underlie arginine-induced glucagon 

secretion from the gut epithelium. The fact that high potassium and forskolin/IBMX treatments 

potently triggered glucagon release from colonic epithelia preparations supports the notion that an 

electrogenic and a cAMP component are both implicated in the secretion of glucagon in the gut. 

Although enteroendocrine cells release gut hormones in response to an array of amino acids and 

oligopeptides in vitro708,756,1089, clinical experiments showed that such stimulatory effects are only 

apparent with oral administration1058. This indicates the amino acid-sensing machinery is localized to 

the apical membrane. The major limitation of the ex vivo experimental setup is that the polarity of 

the mucosal preparation is not preserved and as such, I cannot confirm if arginine-induced glucagon 

secretion from the gut epithelium is apically-mediated. However, the fact that immunoreactive 

glucagon levels remained unaltered upon intravenous arginine infusion in pancreatectomized 

patients458 strongly supports the notion that arginine-induced glucagon secretion from the intestine 

is driven by apical mechanisms.  

Given that the small intestine is the primary site of amino acid absorption, the fact that arginine 

potently stimulated glucagon secretion from colonic mucosal preparation was somewhat 

unexpected as it suggests the colon epithelium has the capacity to sense amino acids despite a 

relatively low exposure to them exogenously. Notably, a similar phenomenon has been reported 

with colonic L cells in which glutamine, and an array of other amino acids, serve as potent GLP-1 and 
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PYY secretagogues708 through a calcium-sensing receptor-dependent pathway1090. This confirms the 

amino acid-sensing capacity of some colonic enteroendocrine cells. It is worth noting that although 

the colonic epithelial cells are not generally exposed to high levels of amino acids derived from 

ingested proteins as their small intestinal counterparts are, they are exposed to amino acids 

produced by the gut microbiome1091. Whilst de novo amino acid biosynthesis by the intestinal flora 

may not be a major contributor to the overall amino acid intake of the host1092, it is possible for 

bacterially-derived amino acids to modulate gut hormone secretion locally within the colonic 

epithelium, where glucagon-secreting cells reside. The intestinal mucosa plays a prominent role in 

amino acid metabolism1093,1094, consistent with the high turnover rate of epithelial cells. Given 

glucagon’s crucial role in regulating hepatic amino acid metabolism471, it is possible that gut-derived 

glucagon serves as a local regulator of intestinal amino acid metabolism.  

5.4.4 Potential sources of gut-derived glucagon 

The source of gut-derived glucagon remains to be determined. Findings from the present study 

indicate there is a distinct population of GCG-expressing enteroendocrine cells in the human small 

intestine and distal colon that secrete glucagon. Glucagon is the cleavage product of PC2 (encoded 

by PCSK2) while GLP-1 and oxyntomodulin are derived from PC1/3 (encoded by PCSK1)1095 (see 

Figure 1.3.5). It remains to be determined whether these glucagon-secreting cells belong to a subset 

of L cells that express both PCSK1 and PCSK2, and are capable of secreting both glucagon and GLP-1, 

or if they constitute a distinct population that expresses only PCSK2 and only secrete glucagon. 

However, such a task remains technically challenging as co-staining for glucagon and GLP-1 is 

hindered by identical epitopes between glucagon and OXM, GLP-1 and MPGF, meaning that most 

side-viewing antibodies would not be appropriate for such a purpose. Notably, co-localization of 

glucagon, PC1/3 and PC2 have been reported in murine embryonic ileal L cells, although the authors 

reported only very low levels of PC2 staining and that glucagon-positive cells were completely 

absent in neonatal and adult mice1096. Nonetheless, it provides support that the molecular 

machinery to produce “pancreatic glucagon” does exist in the gut. Moreover, it should be noted that 

the relatively low levels of glucagon detected in the secretion assay supernatants suggests that 

glucagon is likely produced in relatively small amount in the gut by a scarce population of cells, 

further reducing the likelihood of detection with immunohistochemical approaches. Given the 

remarkable plasticity of the hormonal profile of enteroendocrine cells102,103,1097,1098, it is possible that 

PCSK2 expression is upregulated under conditions of metabolic challenge. Indeed, it has recently 

been demonstrated that PCSK2 expression in the small intestine is higher in T2D patients when 

compared with healthy controls1099. Such an observation mirrors that seen in pancreatic α cells, in 

which PCSK1 expression is markedly upregulated to increase GLP-1 production by α cells upon 
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metabolic challenges such as high fat diet1100, inflammation95, STZ-induced diabetes1101 and 

pregnancy239. However, while α cells co-express PC1/3 and PC21101 and GLP-1 co-localizes with 

glucagon granules in individual pancreatic α cells239, results from the current experiment suggests 

this is unlikely to be case for GLP-1-secreting enteroendocrine L cells. The differential glucagon and 

GLP-1 responses to phlorizin and diaxozide in the presence of high glucose suggest the two peptides 

are unlikely to be co-released from the same cell. The fact that arginine treatment stimulates 

glucagon secretion and inhibits oxyntomodulin (a PC1/3 cleavage product) secretion supports the 

notion that these hormones exist in different cells. Moreover, a recent clinical experiment that 

employed a MS-based multiplex assay to quantitate postprandial PGDPs in healthy individuals 

reported that although both GLP-1 and glucagon levels increased postprandially, the excursion 

profile of glucagon substantially differed from that of GLP-1, contrasting oxyntomodulin, which 

closely tightly matched the postprandial excursion profile of GLP-1. However, it remains perplexing 

that arginine exerts an inhibitory effect on OXM secretion as clinical experiments showed that 

arginine, administered orally or intravenously, had no effect on GLP-1 levels1058. It is generally 

assumed that OXM is secreted by GLP-1-secreting cells, considering the two peptides are both 

products of PC1/3 and that almost all GLP-1 contained OXM vesicles1102. Nonetheless, it remains 

possible that the two peptides are stored in separate vesicles and their exocytosis are differentially 

regulated. 1103Together, these observations led the authors to suggest that glucagon and GLP-1 were 

released postprandially by different cells1056. Thus, gut-glucagon is likely the product of a specific 

population of GCG-expressing enteroendocrine cells that expresses only PCSK2 and not PCSK1.  

5.4.5 Potential physiological functions of gut-derived glucagon 

5.4.5.1 Protection from postprandial hypoglycaemia 

It is well-established that oral glucose is less potent at suppressing glucagon secretion477,478,1104-1106 

and reducing hepatic glucose output1071 than intravenous glucose, despite oral glucose being a more 

effective stimulus for insulin secretion (due to the incretin effect). However, this paradox may reflect 

an inherent protective mechanism against postprandial hypoglycaemia, as previously speculated469. 

This is best illustrated in an oral glucose challenge followed by isoglycaemic intravenous glucose 

infusion (IIGI), in which the glycaemic profile of the IIGI is tightly matched with that from the oral 

glucose challenge by constantly adjusting the rate of glucose infusion463,1071. The amount of 

circulating glucose in these two scenarios is identical, but oral glucose has a much higher 

insulinotropic potency due to the incretin effect. Accordingly, the amount of circulating glucose per 

unit of circulating insulin is much lower after oral glucose. This results in a significantly higher 

disposal rate of exogenous glucose, presumably because each unit of insulin can direct the uptake of 
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a definitive amount of glucose by insulin-sensitive tissues before hepatic extraction. Therefore the 

amount of circulating glucose remaining after insulin-mediated glucose disposal would be lower in 

the case of oral glucose compared with intravenous glucose infusion. Thus, the risk of hypoglycaemia 

is higher if no counter-regulatory mechanisms are in place. Maintaining an adequate level of hepatic 

glucose output with a modest amount of glucagon therefore minimises the risk of postprandial 

hypoglycaemia. Indeed, there is evidence suggesting the lack of postprandial glucagon response 

could be a major contributing factor of postprandial reactive hypoglycaemia1107. Although 

postprandial hypoglycaemia has not been reported in animal models in which GCGR signalling was 

compromised, clinical studies in bariatric patients that were symptomatic for postprandial 

hypoglycaemia evidenced the importance of maintaining an adequate insulin: glucagon ratio in 

preventing postprandial hypoglycaemia1108. In bariatric patients with symptomatic postprandial 

hypoglycaemia, both insulin and C-peptide: glucose molar ratios were significantly higher than in 

non-symptomatic bariatric patients, and while postprandial glucagon levels were not different 

between the two groups, such an exaggerated insulin: glucagon may be the underlying cause of 

reactive hypoglycaemia1108.  

Since incretin secretion and subsequent insulin secretion are proportional to the oral glucose 

load204,359,1104,1109-1112, glucagon-secreting cells in the gut would be well-situated to respond to this 

load. Additionally, incretins could modulate glucagon secretion from the gut via paracrine signalling 

and direct glucagon-secreting cells in the gut to secrete adequate amounts of glucagon to counteract 

the facilitated insulin response. Importantly, glucagon that is secreted postprandially should not 

affect insulin-mediated glucose clearance as the primary site for postprandial glucose disposal is 

skeletal muscles1113, which do not appear to express GCGR1114. However, without detailed 

characterization of the distribution of GCGR in humans, it will be difficult to elucidate the exact role 

of extra-pancreatic glucagon.  

5.4.5.2 Nutrient sensor and satiety signals 

Glucagon-secreting cells in the gut may act as nutrient sensors and convey satiety signals alongside 

other gut hormones such as GLP-1, PYY and CCK. Peripherally administered glucagon activates 

neurons in the brainstem and amygdala, increasing c-Fos immunoreactivity in similar regions to that 

following GLP-1-induced activation388. This adds support that the two proglucagon-derived peptides 

share the same CNS targets to induce satiety and affect food intake, and is likely mediated by a 

direct activation of GCGR-expressing vagal afferent nerve terminals585 since glucagon has limited 

access at the blood brain barrier586,587. Gut-derived glucagon may also modulate feeding by 

promoting intestinal gluconeogenesis470. The small intestine expresses gluconeogenic 

enzymes1115,1116 and is capable of gluconeogenesis1117. This substantially increases portal glucose 
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concentrations, which subsequently activates glucose sensors along the portal vein and relays the 

signal to hypothalamic nuclei involved in appetite regulation to reduce food intake594-596. A protein 

rich meal is a potent stimulant of glucagon secretion in vivo479,597,598 and dietary protein is also a 

strong activator of intestinal gluconeogenesis595,599. Therefore, it is plausible that glucagon-secreting 

cells in the gut epithelium are strongly activated by ingested protein, and release glucagon to 

promote intestinal gluconeogenesis. Such a mechanism is proposed to underlie the satiating effects 

of dietary proteins595. Moreover, it is possible for dietary protein to directly stimulate glucagon-

secreting cells in the gut to secrete glucagon, which subsequently drives postprandial amino acid 

disposal1118,1119 by promoting ureagenesis in the liver to prevent accumulation of ammonia471.  

5.4.5.3 Regulator of intestinal motility 

Glucagon is a powerful inhibitor of GI motility, intestinal contractions were inhibited typically within 

the first minute upon administration of glucagon1120-1122. However, such inhibitory effect was only 

apparent when plasma glucagon levels exceeds 800 pg/mL1123, which is more than ten-fold of 

physiological levels. Therefore, it is highly unlikely for glucagon originating from pancreatic α cells to 

mediate such effect in an endocrine fashion. Although potential neural involvements cannot be 

discounted, paracrine signalling between glucagon cells within the gut epithelium and intestinal 

smooth muscle is highly plausible. As such, intestinal motility is reduced upon luminal nutrient 

exposure, which enables optimal nutrient absorption and serves as a satiety signal.  

5.4.6 Conclusion 

The aim of this study was to confirm the presence of, and to elucidate the factors that regulate the 

secretion of, glucagon from the gut. As such, I established that the ileal epithelium releases glucagon 

in response to glucose and arginine stimulation. This result could serve to explain postprandial 

hyperglucagonaemia in post-bariatric patients, in which surgical manipulations of their gut anatomy 

resulted in accelerated nutrient delivery to their distal small intestine, and subsequently markedly 

increases post-prandial levels of most proglucagon-derived peptides, including glucagon432,463,1046. 

However, the underlying mechanisms of nutrient-induced glucagon secretion remain to be 

determined. Glucose-induced glucagon secretion was not attenuated by the blockade of SGLT1 and 

SGLT2, nor was it affected by the opening of KATP channels, indicating that glucagon and GLP-1 do not 

originate from the same cells. Moreover, the entero-glucagonotropic potential of other amino acids 

and nutrients warrant further investigation. It is worth noting that plasma glucagon levels markedly 

increased upon enteral1124, but not parenteral lipid administration1125, which suggests glucagon-

secreting cells in the gut could be implicated. This further adds support to the notion that one of the 

major physiological functions of gut-derived glucagon is to counteract the insulinotropic actions of 
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incretins as plasma levels of GIP and GLP-1 increase considerably upon oral lipid ingestion1125,1126. 

Altogether, the results from this study will form the basis for future experiments to explore the 

regulatory factors controlling the secretion of glucagon from the gut. 
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6 Summary and future directions 

The primary aim of this project was to elucidate the mechanism underlying the secretory response 

of proglucagon-expressing enteroendocrine cells in humans. Collectively, enteroendocrine cells 

make up the largest endocrine organ in the body760. In order to study the physiology of these 

endocrine cells in detail, it is necessary to obtain these cells in highly enriched primary culture. 

However, in contrast to most other endocrine organs where hormone-secreting cells are found in 

distinct clusters, either as a homogenous population such as chromaffin cells of the adrenal glands, 

or in heterogenous clusters such as the pancreatic islet cells, where α, β, δ and PP cells are found 

juxtaposed to each other, enteroendocrine cells are sparsely distributed along the entire length of 

the gastrointestinal tract97. Indeed, two enteroendocrine cells are rarely found adjacent to one and 

other due to the inhibitory notch-signalling during the differentiation process of gut epithelial 

cells100. Moreover, there is a high degree of diversity in the hormone expression profiles of these 

cells, which gives rise to different subtypes of enteroendocrine cells98. Altogether, to be able to 

isolate a specific subtype of enteroendocrine cells and to study them in pure primary culture has 

proved to be extremely difficult. Thus, research on L cell physiology has been heavily-reliant on cell 

lines such as GLUTag and NCI-H716 cells. The single cell clones permit analysis of direct effects on 

the cell through the use of techniques such as calcium-imagining and patch-clamping657,658,668,1127. 

Cell lines also have the advantage of being readily transfected1128. Altogether, despite some major 

disparities from native L cells, they remain the model of choice for high throughput experiments. The 

generation of transgenic mice with specific hormone promoter-driven expression of fluorescent 

proteins has enabled several groups of obtain GIP-secreting K cells706 and GLP-1-secreting L cells692 in 

pure cultures using FACS-based methods. However, it is generally accepted that FACS is a highly 

traumatic process for primary secretory cells. Indeed, Reimann et al. reported that most of the FACS-

sorted L cells were not viable692 and thus, could not be used for functional experiments such as patch 

clamping or calcium-imaging. In addition, such fluorescent protein-based method could not be used 

to obtain pure cultures of human enteroendocrine cells. Pioneering work from our laboratory has 

enabled the isolation and purification of the most abundant enteroendocrine cells, the serotonin-

secreting enterochromaffin cells from mice113,115, guinea pigs116,993, and humans109,127 using a Percoll 

density gradient. Importantly, these pure primary enterochromaffin cell cultures could be kept 

viable for long enough to allow for functional experiments to be conducted. The first aim of this 

project was to develop a method to isolate L cells from human gut epithelia using a similar approach. 

Despite relentless effort, it was concluded that the Percoll-density gradient-based method was not 

suitable as L cell-enriched mixed cell cultures obtained using this method did not display secretory 



 

132 
 

responses that were consistent with that reported in the literature. It is well-established the short 

chain fatty acids are potent L cell stimulants in vitro710, ex vivo1129,1130 and in vivo761, yet all three 

short chain fatty acids tested had inhibitory, rather than stimulatory effects on GLP-1 secretion. In 

addition, the mixed cell culture obtained using the Percoll-density gradient did not respond to the 

combined stimulatory actions of forskolin and IBMX, an adenylyl cyclase activator and a 

phosphodiesterase inhibitor, respectively, contrasting to results reported by Habib et al., in which 

such combination was used as a positive control for GLP-1 secretory response from primary human 

mixed colonic epithelial cell culture620. Hence, I sought to develop a different platform to study the 

secretory function of human enteroendocrine L cells. 

6.1 Development of an ex vivo platform to study hormone secretion 

from human gut epithelial tissue 

Symonds et al. reported that a stimulatory GLP-1 response could be reliably triggered from human 

colonic epithelial biopsies with long chain fatty acids, indicating an ex vivo approach could be more 

suitable for studying the secretory function of GLP-1-secreting cells in humans117. Therefore, I sought 

to develop an ex vivo static incubation secretion assay using human gut epithelial tissue obtained 

from fresh surgical specimens. Panaro et al. reported that gene expression Mc4r, which encodes for 

the melanocortin 4 receptor (MC4R), is highly enriched in murine L cells762. Moreover, MC4R 

agonists significantly triggered GLP-1 and PYY secretion in mice in vivo and ex vivo in an Ussing 

chamber setup762. Therefore, a range of MC4R agonists were used as stimulants for GLP-1 and PYY 

secretion from human colonic epithelia to validate this ex vivo secretion assay. Initially, the 

composition of the secretion assay buffer resembled that of cell culture media and the incubation 

time of two hours was chosen based on the duration for most GLP-1 secretion experiments reported 

in the literature95,117,186,620,660,692,708,710,756,762,768. Under these parameters, none of the MC4R agonists, 

nor did the combination of forskolin and IBMX, significantly triggered GLP-1 or PYY secretion from 

basal levels after two hours, as was expected based on results reported by Panaro et al.762. However, 

I later noted that although MC4R agonists significantly trigger GLP-1 secretion from a rat intestine 

perfusion model, the effect was relatively modest and occurred within the first 5-10 minutes of 

stimulation and gradually returned to baseline despite continual stimulations762. Thus, a two-hour 

incubation was likely to hinder the detection of any stimulatory responses from my assay. Therefore, 

I tested the feasibility of shorter incubation times. It was later determined that 15 minutes was the 

optimal incubation time to detect any stimulatory response.  
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6.2 Glucose-induced GLP-1 secretion in humans is driven by SGLT1, 

GLUT2 and mitochondrial metabolism  

Using this ex vivo gut epithelial secretion assay platform, I elucidated the molecular mechanism of 

glucose-induced GLP-1 secretion from the human small intestine. Exposure to postprandial luminal, 

but not vascular, glucose concentrations, potently triggered GLP-1 release from human duodenal 

and ileal, but not colonic mucosae. I then showed that this stimulatory response is independent of 

osmotic influences and requires the delivery of glucose via GLUT2 and mitochondrial metabolism. 

The requirement of the activation of voltage-gated Na+ and Ca2+ channels indicates that GLP-1 

release occurs in response to membrane depolarization. This is predominantly driven by the 

electrogenic activity of sodium glucose co-transporter, SGLT1, as glucose-induced GLP-1 was blocked 

by the SGLT1 inhibitor phlorizin or by the replacement of extracellular Na+ with NMDG. On the other 

hand, KATP channel closure alone is insufficient to trigger depolarization as tolbutamide treatment 

did not trigger GLP-1 release, consistent with the reported inability of sulfonylureas to trigger GLP-1 

release in humans774.   

6.3 Metformin exposure causes L cell secretion in an AMPK-

dependent manner 

Metformin is the first line T2D treatment. While it has clear clinical anti-diabetic effects, its 

mechanism of action remains uncertain778,790. The increased efficacy of delayed release metformin 

over intravenous metformin794 indicates that a lower bowel-mediated mechanism may underlie 

some of its anti-diabetic action. Therefore, I tested whether metformin directly stimulate the 

secretion of GLP-1 and PYY from human L cells. I found that acute exposure to 10 μM of metformin 

significantly triggered GLP-1 and PYY release, and this stimulatory effect was preserved in T2D 

patients and was not correlated with BMI of the specimen donors. I further demonstrated that 

AMPK inhibition blocked the L cell response to metformin, as did antagonists of PMAT and SERT, 

membrane transporters associated with metformin internalisation. Thus, it is likely that upon oral 

administration, metformin is internalised in L cells and activates AMPK to trigger GLP-1 and PYY 

secretion. This mechanism may subserve weight loss and glycaemia benefits of metformin and are 

in-line with the growing acceptance that the gastrointestinal tract is a primary site of metformin 

action. 
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6.4 Melanocortin 4 receptor activation in the gut triggers L cell 

secretion in humans 

The central melanocortin system is a key regulator of energy homeostasis408. Loss-of-function 

mutations of MC4R represents one of the most common monogenic obesity disorders821. MC4R is 

expressed in murine L cells and intraperitoneal administration of MC4R peptide agonists caused 

significant release GLP-1 and PYY in mice. However, it remains unclear if this pathway exists in 

human. Thus, I sought to investigate if MC4R activation directly triggers GLP-1 and PYY secretion 

from the human gut epithelium. I established that MC4R agonists are strong stimulants of GLP-1 and 

PYY secretion from the human gut, and effect that is blocked by the endogenous MC4R antagonist, 

AgRP. While further experiments are warranted to decipher to physiological function of MC4R-

mediated GLP-1 and PYY secretion, unpublished work from our collaborators showed that POMC-

positive cells are highly abundant in the near vicinity of L cells along the human gut (Young et al. 

unpublished data). Therefore, it is possible that a separate melanocortin system distinct from that of 

the CNS exists in the human gut. Based on these findings, future experiments using an L-cell specific 

Mc4r-knockout mouse models have been planned to determine if MC4R-mediated GLP-1 and PYY 

secretion are implicated in glucose and/or energy homeostasis.  

6.5 Interleukin 6 and IC7 are human L cell secretagogues 

The myokine IL-6 is a key driver for many of the metabolic benefits of endurance exercise922,923. 

Rodent studies showed that IL-6 is a potent L cell secretagogue and that some of the metabolic 

benefits of exercise-induced IL-6 secretion were attenuated in Glp1r-/-
 mice95, and that IL-6 mediates 

GIP-induced GLP-1 secretion in vitro in rodent and human pancreatic islets1131, although the effects 

of IL-6 on human L cells have not been reported. I showed that IL-6 is a potent GLP-1 secretagogue 

from human ileal and colonic mucosal preparations. The fact that IL-6 is an L cell secretagogue, 

alongside its other metabolic benefits, makes IL-6R an attractive therapeutic target for the 

development of anti-diabetic and obesity treatments. However, IL-6R trans signalling through the 

soluble IL-6R extracellular domain is believed to mediate many of the pro-inflammatory effects of IL-

6935,977. IC7, an IL-6/CNTF chimeric protein developed by Prof. Mark Febbraio and his team, has the 

capacity to signal through membrane bound, but not soluble, IL-6R, thereby circumventing the 

undesirable effects of IL-6R trans signalling. Preliminary results showed that the protein was 

effective in reducing weight gain while improving glucose tolerance in DIO mice in a GLP-1R-

dependent manner (Allen et al. manuscript in review). As part of a collaboration with Prof. Febbraio, 

I sought to investigate if the IC7 could stimulate GLP-1 release from the human gut, in a similar 

fashion to that observed with IL-6. I found that IC7 treatment reliably triggered GLP-1 secretion from 
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the human gut, which adds support to the notion that IL-6-induced GLP-1 secretion is a feasible 

therapeutic target for treatment against metabolic diseases.  

6.6 Dynamin activation augments human L cell secretion 

The ex vivo secretion platform was later used to investigate if the classic endocytic protein, dynamin, 

plays a role in mediating L cell exocytosis. Previous work from our laboratory demonstrated that 

dynamin, in addition to its well-defined role in clathrin-mediated endocytosis, is an important 

exocytic protein that regulates the secretion of adrenalin from murine adrenal chromaffin cells1012. 

The dynamin activator, Ryngo 1-231011, showed potential as a reliable L cell secretagogue. The 

stimulatory effect of dynamin activation was also preserved in newer, more stable dynamin 

activators. The inhibition of dynamin inhibitor, dynole 34-21021, significantly attenuated high-K+ 

stimulated PYY secretion, indicating dynamin activation is implicated regulating the exocytotic 

process of human L cells, potentially through changing fusion pore dynamics such that it favours 

increased hormone secretion. I sought to determine if actin and myosin II, binding partners of 

dynamin1027,1030, are implicated in the stimulatory effects of dynamin activation. However, these 

experiments were vastly underpowered as the majority of specimens tested did not respond to the 

stimulatory effect of Ryngo 1-23. Thus, the mechanisms underlying the stimulatory effect of 

dynamin activation in human L cell remains to be characterized.  

6.7 The human ileal epithelium releases glucagon upon arginine or 

high glucose stimulation 

Lund et al. recently confirmed that pancreatectomized patients have detectable levels of pancreatic 

glucagon in their circulation, in contrast to insulin and C-peptide, neither of which were detectable 

after surgery463. Based on the finding that the release of this extra-pancreatic glucagon was potently 

triggered by enteral, but not parenteral glucose in these pancreatectomized patients463, I 

hypothesized that the human gut epithelium could be a source of this fully processed glucagon. 

Indeed, findings from my mass spectrometry that confirmed the presence of glucagon in human ileal 

mucosal extract supported this hypothesis. I next hypothesized that direct exposure of the small 

intestinal mucosa to high glucose could stimulate the release of gut-derived glucagon, potentially in 

a similar fashion as glucose-induced GLP-1 release from the small intestine. While the first part of 

the hypothesis was confirmed, glucose-stimulated glucagon release from the gut could be not 

reliably blocked by phlorizin, an SGLT1 and SGLT2 antagonist, or diazoxide, the KATP channel opener. 

As somatostatin has been suggested to mediate glucose-induced glucagon suppression in pancreatic 

α cells1059,1085, I hypothesized that somatostatin pre-treatment could attenuate glucose-induced 
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glucagon secretion from the gut epithelia. Surprisingly, somatostatin also failed to block the 

glucagon response from high glucose stimulation. Therefore, the glucose-sensing pathways of 

glucagon-secreting cells in the gut remain to be investigated. Given the multifaceted role of glucagon 

in metabolism, it is now urgent to define the physiological functions of such gut-derived glucagon 

and importantly, to elucidate the underlying mechanisms that regulate its secretion. The 

attenuation, or the lack, of prandial glucose-induced glucagon suppression has been classically 

associated with decreased insulin sensitivity1132, in line with the established deleterious effects of 

excess glucagon on glucose homeostasis. The contribution of gut-derived glucagon to such 

phenotype should be considered. Furthermore, it is important to recognise the potential metabolic 

effects of gut-derived glucagon, especially in the absence of insulin, such as in pancreatectomized 

patients. These include beneficial contributions to protection from hypoglycaemia and aiding in the 

removal of ammonia, via ureagenesis, during protein and amino acid metabolism1118,1119. Moreover, 

it could have significant pathophysiological implications in postprandial hyperglucagonaemia and 

hyperglycaemia in diabetic patients. Thus, the mechanisms that regulate the secretory response of 

glucagon-secreting cells from the gut warrants further investigation. It would also be interesting to 

investigate if GCG-expressing cells in the gut are as plastic as pancreatic α cells, and can increase 

glucagon secretion in response to metabolic challenges in a way that is similar to increased GLP-1 

production by α cells in response to STZ treatment1133 or IL-6 exposure95. Notably, α cell-derived 

GLP-1 plays a crucial role in maintaining glucose homeostasis through its paracrine action within the 

islets312, despite this source of GLP-1 being unlikely to account for much of the circulating GLP-1. 

Thus, gut-derived glucagon could be of high functional importance in a similar manner as that of α 

cell-derived GLP-1. 

In summary, I have developed a high throughput experimental platform that is suitable to study GLP-

1 and PYY secretion from the human gut. My results confirmed many of mechanisms that have been 

shown to regulate GLP-1 and PYY secretion in in vitro and in vivo in rodents. Indeed, this ex vivo 

platform can serve as an intermediary step between in vivo rodent experiments and expensive 

clinical trials, allowing one to confirm that pathways of interest do exist in human at the level of the 

gut before clinical trials are conducted. Moreover, this platform is highly versatile as it can be 

modified to study the secretion of other hormones, as evident by my findings showing ileal mucosae 

released glucagon in response to glucose stimulation. However, it should be acknowledged that the 

current model has several major limitations. Firstly, it does not permit determination of direct 

effects on L cells as they are not studied in isolation. Moreover, while the ex vivo platform provides a 

physiologically-relevant model to study gut hormones secretion in human, its ad hoc nature and 

polymorphisms in specimen donors markedly limit its throughput. Contrasting human intestinal 
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organoids, this current method using ex vivo human gut tissue does not allow for transfection and 

thus, is heavily reliant on pharmacological tools, which could be limited by physical and chemical 

properties of these compounds. Nonetheless, many of the findings from this current project have 

formed the basis of some of the experiments that are currently being undertaken by others in the 

laboratory, in addition to many that are currently being planned.   
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