Characterising whole-of-diet patterns of Australian toddlers to inform the development of a short dietary risk assessment tool

Lucinda Kate Bell

B Nut Diet (Hons)

Nutrition and Dietetics, School of Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Flinders University, Adelaide

A thesis submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy

March 2015

TABLE OF CONTENTS

TA	BLE OF	CONTENTS	2
тн	ESIS S	UMMARY	8
DE	CLARA	TION	10
AC	KNOW	LEDGEMENTS	11
ΑB	BREVI	ATIONS	13
LIS	ST OF T	ABLES	14
LIS	ST OF F	IGURES	18
OV	'ERVIE	W OF THESIS STRUCTURE	. 20
1	ASSE	SSMENT OF TODDLERS' DIETARY INTAKE	. 22
1.1	Overvi	ew	22
1.2	Early l	ife nutrition	23
1	.2.1 Im	portance of nutrition in early life	23
	1.2.1.1	Early life nutritional requirements for growth, health and development	
	1.2.1.2	Early life is a period of rapid dietary change	24
	1.2.1.3	Early life is the period when food-related skills are developed	24
	1.2.1.4	Early life is the period when dietary preferences and habits are formed	25
	1.2.1.5	Summary – the importance of nutrition in early life	26
1	.2.2 A 1	Cocus on nutrition in toddlerhood (1 - 3 years)	
	1.2.2.1	Nutritional and developmental context of toddlerhood	27
	1.2.2.2	Fussy eating behaviours in toddlers	
	1.2.2.3	Summary – the nutritional context and challenges of toddlerhood	29
1	.2.3 Co	nsequences of poor nutrition in toddlerhood	
	1.2.3.1	Inappropriate milk consumption	

1.2.	3.2 Iron	deficiency	30
1.2	3.3 Ener	rgy imbalance	31
1.2.	3.4 Sum	mary - health consequences of poor nutrition in toddlerhood	33
1.2.4	What are	the recommendations for food intake in toddlerhood?	33
1.2.	1.1 The	Australian Dietary Guidelines	33
1.2.	1.2 Diet	ary Guidelines from other western developed countries	38
1.2.	1.3 Sum	mary - dietary guidelines for toddlers in developed countries	39
1.2.5	Do toddle	ers' intakes meet the recommendations?	39
1.2.	5.1 Patte	erns of toddlers' intakes in Australia	39
1.2.	5.2 Patte	erns of toddlers' intakes in America	40
1.2.	5.3 Patte	erns of toddlers' intakes in the UK	42
1.2.	5.4 Sum	mary - patterns of toddlers' intakes in developed countries	42
1.2.6	Summary	- toddlers' diets place them at 'dietary risk'	42
1 3 Dic	tory occo	essment of toddlers	11
1.5 DI	tary assc	ssiicht of toddicis	••••
1.3.1	Assessme	ent of whole diet to determine dietary risk	44
1.3.2	Dietary as	ssessment methods	45
1.3.	2.1 Trac	litional dietary assessment methods - recalls and records	45
1.3.	2.2 Alte	rnative dietary assessment methods - questionnaires	45
1.3.	2.3 Shor	rt questionnaire-based dietary assessment methods	46
1.3.	2.4 Sum	nmary – methods for assessing dietary risk	47
1.3.3	The reliab	pility and validity of dietary assessment methods	51
1.3.	3.1 Wha	at is reliability?	51
1.3.	3.2 Wha	at is validity?	52
1.3.	3.3 Stati	istical testing of reliability and validity	54
1.3.	3.4 Sum	mary – accurate assessment of dietary intake	56
1.3.4	Short todo	dler dietary assessment tools – a review of the evidence	59
1.3.	1.1 Intro	oduction	60
1.3.	1.2 Met	hods	61
1.3.	1.3 Resu	ults	65
1.3.	1.4 Disc	eussion	87
1.3.	1.5 Con	clusion	90
1.3.5	Summary	- rapid, accurate assessment of toddlers' dietary risk	91
1.4 De	eloping	a dietary risk assessment tool for toddlers	92
1 4 1	CI.	Salar and a final	0.0
1.4.1		ising whole diet	
1.4.		racterising whole diet through dietary indices	
1.4.		racterising whole diet through dietary patterns	
1.4.2		ising whole diet to inform tool development	
1.4.3	Summary	- development of a short dietary risk assessment tool for toddlers.	97

1.5 The	sis aims	98
1.5.1	Thesis general aim	98
1.5.2	Thesis specific aims	
2 DIE	TARY PATTERNS OF AUSTRALIAN TODDLERS	99
2.1 Ove	rview	99
2.2 Diet	ary patterns in toddlers	100
2.2.1	Summary of studies	
2.2.2	Summary of extracted dietary patterns	101
2.2.3	Validation of dietary patterns	102
2.2.3	.1 Associations with nutrient intakes	102
2.2.3	.2 Associations with demographic factors	103
2.2.3	.3 Associations with health outcomes	103
2.2.4	Summary – PCA-derived dietary patterns in toddlers	104
2.3 Diet	ary patterns of Australian toddlers	115
2.3.1	Introduction	115
2.3.2	Methods	117
2.3.2	.1 Study design	117
2.3.2	.2 Dataset	117
2.3.2	.3 Data collection and entry	119
2.3.2	•	
2.3.2		
2.3.3	Results	
2.3.3		
2.3.3		
2.3.3		
2.3.3		
2.3.4	Discussion	
2.3.4		
2.3.4	• •	
2.3.4	J 1	
2.3.4		
2.3.4		
2.3.4	Conclusion	
۵.۶.۶	Conclusion	170
24 Cha	nter cummary	171

4020	TIONNAIRE (TDQ)	
3.1 Ov	verview	172
3.2 Co	onsiderations for developing a short dietary ris	k assessment tool for
Austra	lian toddlers	173
3.2.1	Selection of tool items using age- and population-specif	ic dietary patterns 173
3.2.2	Dietary assessment period of a new short tool	173
3.2.3	Should a new short tool be self- or interviewer-administ	ered? 174
3.2.4	Should a new short tool include portion size estimation?	⁹ 174
3.2.5	Applying a dietary index scoring system to derive a mea	asure of dietary risk 175
3.2.6	Summary – developing a short dietary risk assessment to 177	ool for Australian toddlers
3.3 Te	esting the reliability and validity of a new short	dietary risk
assessn	nent tool for Australian toddlers	178
3.4 De	evelopment and testing of the TDQ	182
3.4.1	Introduction	
3.4.2	Methods	
3.4	.2.1 Development of the TDQ	
3.4	.2.2 Scoring of the TDQ	
3.4	.2.3 Reliability and validity of the TDQ	191
3.4	.2.4 Statistical analysis	
3.4.3	Results	195
3.4	.3.1 Sample Characteristics	195
3.4	.3.2 Reliability and validity	
3.4.4	Discussion	
3.4	.4.1 Reliability of the TDQ	
3.4	.4.2 Validity of the TDQ	208
3.4	.4.3 Novelty of the TDQ	
3.4	.4.4 Dietary risk of Australian toddlers	
	.4.5 Potential uses of the TDQ	
	.4.6 Study strengths and limitations	
	Conclusion	
5.1.5		
3.5 Ch	napter summary	212

4	TESTI	NG THE CONVERGENT VALIDITY OF THE TDQ	213
4.1	Overvi	ew	213
4.2	Dietary	y indices in toddlers	21
	2.1 0		21
		mmary of studies	
		mmary of dietary index properties	
4.		lidation of dietary indices	
	4.2.3.1		
	4.2.3.2 4.2.3.3		
1		Associations with socio-demographicsmmary – dietary indices in toddlers	
4.	.2.4 Sul	ilmary – dietary indices in toddiers	21
4.3	Testing	g the convergent validity of the TDQ	227
4.	.3.1 Inti	roduction	22
4.	.3.2 Me	ethods	229
	4.3.2.1	Study population	229
	4.3.2.2	Measures	
	4.3.2.3	Nutrient intakes	23
	4.3.2.4	Data analysis	233
4.	.3.3 Res	sults	234
	4.3.3.1	Sample characteristics	234
	4.3.3.2	Associations with nutrient intakes	234
	4.3.3.3	Associations with socio-demographic factors	235
	4.3.3.4	Associations with adiposity	
4.	.3.4 Dis	scussion	240
	4.3.4.1	Associations with nutrient intakes	240
	4.3.4.2	Associations with adiposity	24
	4.3.4.3	Associations with socio-demographic factors	242
	4.3.4.4	Comparison of study findings to other similar studies	243
	4.3.4.5	Study strengths and limitations	243
	4.3.4.6	Future directions of the TDQ	244
4.	.3.5 Co	nclusion	245
4.4	Chapte	er summary	245
5	חופרו	JSSION AND CONCLUSION	244
J	טוטכוט	GOION AND CONCLUSION	4 40
5 1	Overvi	OW	246

5.2	Summary - methodology and key findings	246
5.3	Thesis limitations and strengths	250
5.	.3.1 Thesis limitations	250
5.	.3.2 Thesis strengths	254
5.4	Implications for practice and future directions	255
5.	.4.1 Implications for practice	256
	5.4.1.1 The use of the TDQ in the clinical setting	256
	5.4.1.2 The use of the TDQ in the research setting	256
5.	.4.2 Future directions	257
	5.4.2.1 Widening the applicability of the TDQ	257
	5.4.2.2 Opportunities for modification of the TDQ	260
5.5	Conclusion	263
6	REFERENCES	264
7	APPENDICES	280
Apj	pendix 1 - Papers, conference presentations and awards	s/prizes arising
froi	m this thesis	281
Apj	pendix 2 - Literature review search process	323
Apj	pendix 3 - Study data collection forms	326
Apj	pendix 4 - Ethics approval letter	348
Apj	pendix 5 - Recruitment materials	351
App	pendix 6 - Participant incentives	355

THESIS SUMMARY

Toddlerhood is an important period of life when nutritional experiences shape children's growth, health and development. Exposure to foods during this period influences the development of food preferences and thus current and future eating patterns. Yet toddlers begin to exert their independence in food choices and demonstrate fussy eating behaviours, placing them at risk of poor nutrition. Current dietary intakes of toddlers fall short of dietary recommendations, suggesting many are at 'dietary risk', a term used to describe 'inappropriate dietary patterns' that may impair health. As poor dietary behaviours may persist over time and influence shortand long-term health, early risk identification is important so that intervention can be initiated. Traditional dietary assessment methods are associated with limitations, such as being costly, time-intensive and burdensome on researchers and responders. Short questionnaires are an attractive alternative to assess dietary intake. The literature review presented in **chapter one** highlights that there are no short (<50 item) valid and reliable dietary assessment tools to measure diet of Australian toddlers. Thus, the primary aim of this thesis was to develop and validate a short dietary assessment tool for measuring dietary risk in Australian toddlers aged 12 - 36 months.

Dietary patterns of Australian toddlers were characterised by applying principal components analysis to food intake data collected for two Australian studies. This analysis guided selection of tool items and is described in **chapter two**. Patterns were similar at two ages, 14 and 24 months, representing 'core' (items recommended to be consumed every day, such as fruit, vegetables, lean meat, dairy, high-fibre bread and water) and 'non-core' (high-fat, -sugar and/or -salt items not included in the 'core' food groups such as spreads, snacks, chocolate, processed meat and sweetened beverages) intake. Based on extracted patterns and the Australian Dietary Guidelines a 19-item Toddler Dietary Questionnaire (TDQ) that assesses the previous week's food-group intake was developed, and is described in **chapter three.** Intake is evaluated using a scoring system to determine dietary risk (0 - 100;

higher score = higher risk) and stratified into four risk categories (low, moderate, high, very high).

Evaluation of the TDQ psychometric properties, detailed in **chapter three**, showed that risk scores were highly correlated and not significantly different between administrations or compared with a valid and reliable FFQ. Further, all participants were classified into the same or adjacent risk category (low - very high). However, analyses were conducted on data collected from a relatively advantaged sample of Australian toddlers. Thus, the TDQ has reliability and comparative validity as a short toddler dietary risk assessment tool for Australian toddlers from relatively advantaged backgrounds. Further testing was undertaken to determine the convergent validity of the dietary risk construct, and is presented in **chapter four**. Risk scores were associated with nutrient intakes in expected directions; lower and higher risk scores reflect better and poorer nutrient intakes, respectively. Risk scores were positively associated with socio-demographic factors but not BMI z-scores. These findings demonstrate that dietary risk scores measure intake that may impair health but currently do not specifically assess obesity risk. The key findings, strengths and limitations, the implications for practice, and areas for further research are summarised in **chapter five**. In conclusion, the newly developed TDQ is a valid and reliable screening tool for assessing dietary risk of relatively advantaged populations of toddlers, and may therefore be useful in early childhood nutrition promotion.

DECLARATION

'I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.'

Lucinda K Bell

August 2014

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of a number of significant people whom I would like to formally acknowledge and thank.

Firstly, I would like to thank, from the bottom of my heart, my primary supervisors, Associate Professor Anthea Magarey and Dr Rebecca Golley, for their ongoing direction, constructive criticism, patience and encouragement throughout this journey. Their expertise and knowledge has been invaluable and their quality of supervision has fostered great working relationships and friendships which I truly value and which has allowed me to grow substantially as a nutrition researcher. I thank them for the trust, belief and independence they placed in me and for their contribution to publications arising from this thesis. Special thanks to Professor Jane Scott for encouraging me to undertake a PhD and for her wisdom, support and feedback throughout the process. I would also like to acknowledge and thank Professor Lynne Daniels, a key investigator for the NOURISH study, for fostering the data used in this thesis and for her contribution to a resulting publication.

Many thanks to the NOURISH and SAIDI study teams at Flinders University and the Queensland University of Technology for their contributions to data used in this thesis. I gratefully acknowledge; Anthea Magarey and Lynne Daniels for coordinating the studies; Dr Rebecca Perry, Chelsea Mauch, Kylie Markow, Rachel Elovaris, Jo Meedeniya, and Rebecca Byrne who assisted in recruitment, data collection and entry; and PhD researchers Gloria Koh and Foorough Kavian who assisted in recruitment and data collection. Without the contribution of each and every member of the team, my PhD journey would not have been a success.

An important thank you to all families who enthusiastically gave up their time to participate in the three studies encompassed in this thesis; NOURISH, SAIDI and the Toddler Dietary Intake study. This thesis would not have been possible without your interest in, and dedication to, your child's dietary behaviours and health.

I'd further like to thank the funding support, primarily the National Health and Medical Research Council (NHMRC), SA Health and Meat and Livestock Australia for funding the NOURISH and SAIDI studies. Thank you also to the Australian Government and Flinders University who provided an Australian Postgraduate Award and Flinders University top-up scholarships, respectively.

A huge thank you to all staff and students of the Nutrition and Dietetics department at Flinders University who have made me feel a welcome and valued member of the Nutrition and Dietetics 'family'. I have appreciated all of the support and friendship you have provided me which has truly made my PhD journey all the more enjoyable. Special thanks to the Childhood Obesity Research Team for your continual motivation and, most of all, true friendship, over the years. You hold a very special place in my heart and I look forward to working with you all again in the future.

Finally, much love and thanks to my incredibly supportive family and friends, in particular my parents Jo and Geoff and partner Rohan. To my parents, thank you for your endless praise and encouragement which gave me the confidence to believe that I can achieve my goals. To Rohan – my rock - thank you for the sacrifices you made to make this thesis possible. You gave me the freedom to pursue my goals and supported me every step of the way. I will forever be grateful for your love, patience and understanding.

ABBREVIATIONS

ALSPAC Avon Longitudinal Study of Parents and Children

ANOVA Analysis of Variance BMI Body Mass Index

CVD Cardiovascular disease

DOB Date of birth

DQI Diet quality index

EDR Estimated dietary record

EDNP Energy-dense nutrient-poor

FFQ Food Frequency Questionnaire

FITS Feeding Infants and Toddlers Study

FSANZ Food Standards Australia New Zealand

HEI Healthy Eating Index

ICC Intraclass correlation coefficient

IQ Intelligence Quotient IQR Interquartile range

kJ Kilojoule

KMO Kaiser-Meyer-Olkin

MD Mixed dishes MJ Megajoule

LOA Limits of agreement

NHMRC National Health and Medical Research Council

MD Mixed dishes

PCA Principal components analysis

Q Quartile

RCT Randomised controlled trial

SAIDI` South Australian Infant Dietary Intake
SEIFA Socio-Economic Indices for Areas

SES Socio-economic status SD Standard deviation

SPSS Statistical Package for the Social Sciences

SWS Southampton Women's Survey
TAFE Technical and Further Education
TDQ Toddler Dietary Questionnaire

UK United Kingdom

USA United States of America
WDR Weighed dietary record
WHO World Health Organisation

%E Percent energy

LIST OF TABLES

Table 0-1 Summary of publications contributing to this thesis; their full citation and
publication status at the time of submission
Table 1-1 2013 Australian Dietary Guidelines. Adapted from the 2013 Eat for Health Dietary Guidelines [62]
Table 1-2 Minimum number of serves per day of the five 'core' foods groups recommended for Australian children aged 2 - 3 years [96]
Table 1-3 Advantages and disadvantages of respondent-based dietary assessmen methods; recalls, records, FFQ, and targeted questionnaires. Adapted from Magarey et al 2010 [121] and Collins et al 2010 [125]
Table 1-4 Descriptions of measures of reliability and validity. Adapted from Gleasor et al 2010 [142]53
Table 1-5 Definitions of statistical terms for measuring reliability and validity57
Table 1-6 Characteristics of included studies (n=16) and their tools (n=15)68
Table 1-7 Summary of availability of validity and reproducibility data for each study according to energy and/or nutrient intake and food intake74
Table 1-8 Short dietary assessment tool validity studies among infants and toddlers (birth - 24 months) and preschoolers (2 - 5 years)
Table 1-9 Short dietary assessment tool reliability studies among preschoolers (2-5 years)
Table 1-10 Studies examining diet quality indices among infants and toddlers (birth 24 months) and preschoolers (2 - 5 years), details of the content of the indices and their applicability to short dietary assessment tools identified in Table 1-6 Adapted from Smithers et al 2011 [156]

Table 1-11 Strengths and limitations of methods that characterise whole diet.
Adapted from Moeller et al 2007 [117]95
Table 2-1 Studies deriving dietary patterns of toddlers, aged 1 - 3 years, using
principal components analysis (PCA) and testing of their properties. Adapted
from Smithers et al 2011 [156]
Table 2-2 NOURISH and SAIDI study inclusion and exclusion criteria118
Table 2-3 Summary of socio-demographic data collected at birth (stage 1
recruitment), 13 - 16 months and 22 - 25 months ¹
Table 2-4 Food groups and food group descriptions
Table 2-5 Communalities for foods included in PCA at 13 – 16 and 22 - 25 months
Table 2-6 Total variance explained by each of the 69 components at 13 - 16 months
132
Table 2-7 Total variance explained by each of the 73 components at 22 - 25 months
Table 2-8 Characteristics of mother-child dyads included in PCA at 14 and 24
months
Table 2-9 Median (IQR) of food group intake in 14 and 24 month old toddlers
(n=552)143
Table 2-10 Varimax-rotated food group loadings on each of the two dietary patterns
extracted by principal components analysis at 14 and 24 months145
Table 2-11 Median (IQR) of food group ¹ intake across quartiles of PCA-derived
dietary pattern scores in 14 month old toddlers (n=552)

Table 2-12 Median (IQR) of food group intake across quartiles of PCA-derived
dietary pattern scores in 24 month old toddlers (n=493)
Table 2-13 Median (IQR) of energy-adjusted nutrient intakes across quartiles of PCA-derived dietary pattern scores in 14 month old toddlers (n=552)152
Table 2-14 Median (IQR) of energy-adjusted nutrient intakes across quartiles of PCA-derived dietary pattern scores in 24 month old toddlers (n=493)
Table 2-15 Unadjusted associations between dietary patterns and maternal and child characteristics, at 14 and 24 months ¹
Table 2-16 Associations between dietary patterns and maternal and child characteristics after adjustment for covariates ¹
Table 2-17 Unadjusted associations between BMI z-score and dietary patterns, at 14 and 24 months ¹
Table 2-18 Associations between BMI z-score and dietary patterns, at 14 and 24 months, after adjustment for covariates ^a
Table 3-1 Foods loading strongly (≥0.25) on each dietary pattern of 14-(n=552) and 24-month-old (n=493) Australian toddlers
Table 3-2 Modelled serves per week of <i>Omnivore Foundation Diet</i> food groups for toddlers aged 13-23 months and 2-3 years used to inform portion-size categories of the TDQ. Adapted from the Dietary Guidelines Modelling System [223]189
Table 3-3 Scoring template for the Toddler Dietary Questionnaire (TDQ)190
Table 3-4 Characteristics of parent-toddler dyads included in the reliability and relative validity analyses (n=111)

Table 3-5 Section and total dietary risk scores for each administration of the TDQ (TDQ1, TDQ2), average TDQ and FFQ, and classification into dietary risk categories (n=111)
Table 3-6 Agreement of Toddler Dietary Questionnaire items (product of frequency and quantity categories, categorical) between each administration among Australian children aged 12-36 months (n=111)
Table 3-7 Test-retest reliability of TDQ risk scores and relative validity of average TDQ and FFQ risk scores, for each section and total risk scores(n=111)201
Table 3-8 Cross classification of participants into dietary risk categories (low, moderate, high, very high) between the administrations of the Toddler Dietary Questionnaire (TDQ) and average TDQ (TDQave) and FFQ (n=111) ¹ 202
Table 4-1 Studies examining indices of diet quality among toddlers, aged 1 - 3 years, from developed countries. Adapted from Smithers et al 2013 [156] and Marshall et al 2014 [144]
Table 4-2 Characteristics of parent-toddler dyads included in the convergent validity analysis (n=117)
Table 4-3 Mean (SD) of energy-adjusted nutrient intakes across quartiles of dietary risk scores in 12 - 36 month children (n=117)
Table 4-4 Unadjusted associations between participant characteristics and dietary risk scores ¹
Table 4-5 Associations between maternal and child characteristics (n=117) and toddler dietary risk scores (n=115), and between toddler dietary risk scores and toddler BMI z-scores (n=114), after adjustment for covariates ¹
Table 5-1 Summary of the findings of the reliability and validity properties of the TDQ derived from a sample of parent-toddler dyads249

LIST OF FIGURES

Figure 1-1 2013 Australian Guide to Healthy Eating (AGHE) [95]35
Figure 1-2 Quorum statement flow diagram. Studies assessing whole-of-diet intake of infants and toddlers (birth – 24 months) and preschoolers (2 – 5 years) using a short assessment tool
Figure 2-1 Tool development and validation flow diagram; step 1 of 499
Figure 2-2 Scree-plot for the PCA at 13 - 16 months
Figure 2-3 Scree plot for the PCA at 22 - 25 months
Figure 2-4 Two-phase recruit process for the NOURISH and SAIDI studies and derivation of participants for PCA of dietary intake data
Figure 3-1 Tool development and validation flow diagram; step 2 and 3 of 4172
Figure 3-2 Bland Altman plot assessing the validity of average section 1 dietary risk scores TDQave versus the FFQ among Australian children (n=111) aged 12-36 months. Plot shows the mean difference (mean diff.; ——), the 95% limits of agreement (LOA;) and the fitted regression line (——) for section 1 dietary risk scores (p for linear trend = 0.742)
Figure 3-3 Bland Altman plot assessing the validity of average section 2 dietary risk scores TDQave versus the FFQ among Australian children (n=111) aged 12-36 months. Plot shows the mean difference (mean diff.; ——), the 95% limits of agreement (LOA;) and the fitted regression line (——) for section 2 dietary risk scores (P for linear trend=136)
Figure 3-4 Bland Altman plot assessing the validity of average section 3 dietary risk scores from the TDQave versus the FFQ among Australian children (n=111) aged 12-36 months. Plot shows the mean difference (mean diff.; ——), the 95%

limits of agreement (LOA;) and the fitted regression line () for
section 3 dietary risk scores (P for linear trend=0.133)
Figure 3-5 Bland Altman plot assessing the validity of total dietary risk scores
derived from the average Toddler Dietary Questionnaire (TDQave) versus those
derived from the FFQ among Australian children (n=111) aged 12-36 months.
The plot shows the mean difference (), the 95% limits of agreement (
) and the fitted regression line () for total dietary risk scores (P for linear
trend=0.595)
Figure 4-1 Tool development and validation flow diagram; step 4 of 4213

OVERVIEW OF THESIS STRUCTURE

This thesis is structured as five chapters, with four comprising material already published or accepted for publication, summarised in Table 0-1 (see Appendix 1 - Papers, conference presentations and awards/prizes arising from this thesis).

Chapter one provides the thesis context, outlining the aims and significance of the research. Included in this chapter is a systematic review of the literature on short dietary assessment tools for children aged less than five years, published in the *Journal of Obesity*.

Chapter two characterises dietary patterns of Australian toddlers aged 14 and 24 months by applying principal components analysis (PCA) to dietary data from two Australian studies. This work has been published in the *European Journal of Clinical Nutrition*.

The next two chapters detail the development and testing of a short dietary risk assessment tool for Australian toddlers, the Toddler Dietary Questionnaire (TDQ). Two published papers were derived from these chapters: (1) the development of the TDQ and testing of its test-retest reliability and relative validity, published in the *British Journal of Nutrition* (**chapter three**) and, (2) testing of the convergent validity of the TDQ, accepted for publication in Nutrition & Dietetics (**chapter four**).

Chapter five brings together the thesis findings. The relevance of the findings to clinical practice and research are discussed in the context of the thesis strengths and limitations, leading to a thesis conclusion.

Table 0-1 Summary of publications contributing to this thesis; their full citation and publication status at the time of submission

Chapter	Full citation	Status
1	Bell L, Golley R, Magarey A (2013) Short tools to assess young children's dietary intake: a systematic review focusing on application to dietary index research, <i>Journal of Obesity</i> , Article ID 709626, 17 pages, Epub 26 Sept 2013.	Published ¹ [1]
2	Bell L , Golley R, Daniels L, Magarey A (2013) Dietary patterns of Australian children aged 14 and 24 months and associations with socio-demographic factors and adiposity, <i>European Journal of Clinical Nutrition</i> , 67(6): 638-45	Published ² [2]
3	Bell L, Golley R, Magarey A (2014) A short food-group based dietary questionnaire is reliable and valid for assessing toddlers' dietary risk, <i>British Journal of Nutrition</i> , 112(4): 627-37	Published ² [3]
4	Bell L , Golley R, Magarey A (2014) Dietary risk scores of Australian toddlers are associated with nutrient intakes and socio-demographic factors, but not adiposity, accepted 8 th March 2015 Nutrition & Dietetics	Accepted ² [4]

¹The review was conceived and designed by AM, RG and LB. LB was responsible for the review's conduct and synthesis with input from AM and RG. LB drafted the initial manuscript and AM and RG provided critical review and feedback. All authors read and approved the final manuscript.

²The study was conceived and designed by AM, RG and LB. LB was responsible for the study's conduct and performed all statistical analysis with input from AM and RG. LB drafted the initial manuscript and AM and RG provided critical review and feedback. All authors read and approved the final manuscript